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Department of Computer Science,
Czech Technical University in Prague

Lecture based on AIMA book and its accompanying slides

https://cw.fel.cvut.cz/wiki/courses/b4m36smu



pReinforcement learning (RL) in a nutshell

Imagine playing a new game whose rules you don’t know;
after a hundred or so moves, your opponent announces, “You lose”.

Russell and Norvig
Introduction to Artificial Intelligence
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pAgenda

� A formal definition of RL

− the distinction from MDP known from ZUI course,

− a definition in terms of our SMU general framework,

− (necessary) simplifications from the most general form.

� Passive learning

− model-free and model-based approaches,

− direct utility estimation, adaptive dynamic programming (ADP),
temporal difference (TD) learning,

− illustrative, but not really useful in practice.

� Active learning

− exploration-exploitation dilemma,

− active ADP agent, Q-learner based on TD learning.

� Generalizations and applications

− utility function approximations in large state spaces.
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pReinforcement learning slightly more formally

� Agent interacts with an environment,

� it must learn to act optimally in it,

� we assume that the world is a Markov decision process (MDP),

� however, neither its transition model nor reward function is known,

� the goal is to learn the optimal policy,

� the main difficulties

− action effects unknown and non-deterministic

− rewards can be infrequent/delayed,

− greedy decision making can be far from optimal,

− world is large and complex.
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pReinforcement learning in the SMU general framework

Sequential on-line learning assumed
The environment is fully observable . . . ok = sk
Deterministic rewards given by the current state . . .µr(rk|sk−1, yk−1)→ R(sk−1)
Agent’s hypotheses may differ . . . the most complex form captures the transition
model S(sk|sk−1, yk−1), the reward function R(sk−1) and uses them to compute
the utility functions U(s) or Q(s, a)
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pPassive and active learning

� Passive learning

− the agent employs a fixed policy π,

− it learns how good the policy is by interaction with the environment,
e.g., it learns Uπ(s),

− analogous to policy evaluation in policy iteration,
(however, the big difference is that the model of the environment is un-
known now).

� Active learning

− the agent searches for an optimal (or at least good) policy,

− it explores (many) different actions in (many) different states,

− analogous to learning and solving the underlying MDP.
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pModel-based and model-free learning

� Model-based learning

− learn the MDP model (S and R), or an approximation of it,

− use the model to guess the state utility and find optimal policy,

− more difficult to tailor to the environment
(as straightforward application can be slow).

� Model-free learning

− derive the optimal policy without explicitly learning the environment model,

− typically stem from the estimation of Q, the utility of state-action pairs,

− easier to apply independently of the environment,
may fail in complex worlds.
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pPassive reinforcement learning
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� Simply follow the fixed policy for a long time (many epochs if episodes exist),

� use interaction/epochs as training sequence(s) in learning Uπ∗(s)

(1, 1)−.04 → (1, 2)−.04 → (1, 3)−.04 → (1, 2)−.04 → (1, 3)−.04 → (2, 3)−.04 → (3, 3)−.04 → (4, 3)+1

(1, 1)−.04 → (1, 2)−.04 → (1, 3)−.04 → (2, 3)−.04 → (3, 3)−.04 → (3, 2)−.04 → (3, 3)−.04 → (4, 3)+1

(1, 1)−.04 → (2, 1)−.04 → (3, 1)−.04 → (3, 2)−.04 → (4, 2)−1
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pPassive reinforcement learning

� Approach 1: direct utility estimation (DUE)

− the most simple approach, model-free,

− learn the expected reward-to-go from the observed rewards-to-go,

− reward-to-go of a state s is the sum of the (discounted) rewards from that
state until a terminal state is reached,

− the expected reward-to-go matches the true state utility given the policy,

− an observed reward-to-go represents a sample of this quantity for each
state visited,

− estimate Uπ(s) as (running) average total reward of epochs containing s
(calculating from s to the end of epoch),

− assume γ = 1: reward-to-go((1, 2)) = (0.76 + 0.84)/2 = 0.8

(1, 1)−.04 → (1, 2)−.04 → (1, 3)−.04 → (1, 2)−.04 → (1, 3)−.04 → (2, 3)−.04 → (3, 3)−.04 → (4, 3)+1 . . . 0.76

(1, 1)−.04 → (1, 2)−.04 → (1, 3)−.04 → (2, 3)−.04 → (3, 3)−.04 → (3, 2)−.04 → (3, 3)−.04 → (4, 3)+1 . . . 0.84

(1, 1)−.04 → (2, 1)−.04 → (3, 1)−.04 → (3, 2)−.04 → (4, 2)−1
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pPassive reinforcement learning

� Approach 1: direct utility estimation

− easy, reduces RL to supervised learning
(samples = pairs of state and observed reward-to-go),

− convergence is guaranteed for infinitely many trials,

− big disadvantage is its slow convergence,

− why? does not employ dependence among state utilities!

Uπ(s) = R(s) + γ
∑

s′ S(s′|s, π(s))Uπ(s′)
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pPassive reinforcement learning

� Approach 1: adaptive dynamic programming (ADP)

− a complex model-based method,

− step 1: it learns the transition model S and the reward function R

∗ R(s) is deterministic, whenever a new state entered, store the observed
reward value as R(s),

∗ to learn S(s′|s, a):, keep track of how often you get to state s′ given
that you’re in state s and do action a,

∗ as a result, the agent obtains MDP and “knows” the environment some-
how,

− step 2: (based on the underlying MDP) it performs policy evaluation
(a part of policy iteration, the MDP solution method)

∗ in principle, it solves a system of n Bellman equations
(n is the number of states)
Uπ(s) = R(s) + γ

∑
s′ S(s′|s, π(s))Uπ(s′)

∗ the equations are linear, can be done in O(n3).
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pADP algorithm

function PASSIVE_ADP_AGENT(percept) returns an action

inputs: percept, the current state s’ and reward signal r’

static: π, a fixed policy

mdp, an MDP with model S, rewards R, discount γ
U, a table of utilities, initially empty

Nsa, a state-action frequency table, initially zero

Nsas’, a state-action-state frequency table, initially zero

s, a the previous state and action, initially null

if s’ is new then do U[s’]= r’; R[s’]= r’

if s is not null, then do

increment Nsa[s,a] and Nsas’[s,a,s’]

for each t such that Nsas’[s,a,t] is nonzero do

S[s,a,t] = Nsas’[s,a,t] / Nsa[s,a]

U = POLICY_EVALUATION(π, U, mdp)

if TERMINAL?[s’] then s,a=null else s,a = s’,π[s’]
return a

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B4M36SMU



pPassive reinforcement learning

� Approach 3: temporal difference (TD) learning

− avoids the computational expense of full policy evaluation,

− approximate the exact state utility,

Uπ(s) = R(s) + γ
∑

s′ S(s′|s, π(s))Uπ(s′)

− in the equation above, instead of summing over all successors, only adjust
the utility of the state based on the successor observed in the trial

Uπ(s) ∼ R(s) + γUπ(s′)

− the transition model not needed – model-free,

− example

∗ suppose you see that after the first trial:
Uπ(1, 3) = 0.84 and Uπ(2, 3) = 0.92 ,

∗ if (1,3) → (2,3) happens all the time, you would expect to see:
Uπ(1, 3) = R(1, 3) + Uπ(2, 3) = −0.04 + 0.92 = 0.88,

∗ observed 0.84 in the first trial is little lower,

∗ we might want to (slightly) move it towards 0.88.
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pPassive reinforcement learning

� Approach 3: temporal difference (TD) learning

− update rule for transition from s to s’

Uπ(s) = Uπ(s) + α(R(s) + γUπ(s′)− Uπ(s))

− α is the learning rate,

− R(s) + γUπ(s′) gives a new noisy sample of utility based on next state,

− analogy in online mean estimation

X̂n+1 =
1

n + 1

n+1∑
i=1

xi =
1

n

n∑
i=1

xi +
1

n + 1

(
xn+1 −

1

n

n∑
i=1

xi
)
=

= X̂n +
1

n + 1
(xn+1 − X̂n)

− the update rule maintains a mean of noisy utility samples,

− if the learning rate decreases with the number of samples, it will eventually
converge to true utility values.
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pPassive RL – comparison

� Direct utility estimation

− simple to implement, model-free,

− each update is fast,

− does not exploit state dependence and thus converges slowly,

� adaptive dynamic programming

− harder to implement, model-based,

− each update is a full policy evaluation (expensive),

− fully exploits state dependence, fastest convergence in terms of epochs,

− in active agents, exploration hard to be interleaved with model building,

� temporal difference learning

− another model-free a., update speed and implementation similar to DUE,

− partially exploits state dependence,
does not adjust to all possible successors,

− convergence in between DUE and ADP.
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pADP vs TD
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pActive reinforcement learning

� the ultimate agent’s goal is to find an optimal policy

− another criteria could be learning time and performance during learning,

� let us start with the active ADP agent,

� the smallest change from the passive ADP could be

− do not keep the policy fixed,

− always take the action that maximizes the expected reward

∗ given the existing environment model and utility estimates
(utility estimates follow from the model, the model influenced by policy),

− this action can easily be reached through the Bellman iterative equation

U(s) = R(s) + γ max
a

∑
s′

S(s′|s, a)U(s′)

− we have a greedy active ADP agent,

� what happens?
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pGreedy active ADP agent in a grid world
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The error development in a typical sequence of trials. The suboptimal policy the agent converges in this particular sequence.
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pGreedy active ADP agent

� what happened?

− choosing an optimal action lead to suboptimal results,

− the learned model does not match the true environment,

− the set of trials proposed and observed by the agent proves insufficient to
build a good model,

� solution

− the agent needs more training experience . . .
. . . and more variability in the experience.
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pExploration vs exploitation

� N-armed bandit

− n actions with an unknown stochastic reward (and fixed parameters),

− goal: maximize reward over M trials,

� Greedy strategy – pure exploitation

− take the current best action, maximize the immediate reward,

− gets stuck in a rut,

� Decide independently of rewards – pure exploration

− e.g., random or the least often applied, (quickly) learn the environment,

− the environment is known, but never puts this knowledge into practice,

� “Nearly optimal” actions – a compromise

− e.g, ε-greedy strategy,

− only in ε situations random choice, greedy otherwise,

− it also helps in non-stationary environment.
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pExploration vs exploitation in 10-armed bandit

Sutton, Barto: Reinforcement Learning: An Introduction
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pAlternative action selection strategies

� ε-greedy strategy distinguishes two action categories only

− the currently best and the other actions,

� SOFTMAX strategy

− action a probability at time t is a function of its relative value,

− important: the reward is relative, it must be related to other actions too

p(a) =
eQt(a)/τ∑n
b=1 e

Qt(b)/τ

− why so popular: a generalization of logistic function, differentiable, mini-
mizes cross-entropy,

− τ . . . temperature – a high τ makes the actions equiprobable, for τ → 0
converges to the greedy strategy, τ should decrease with time,

� other strategies: interval estimates.
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pOptimistic utilities

� we converge even faster if actions not tried very often get higher weights,

� modified Bellman equations with optimistic utilities U+(s)

U+(s) = R(s) + γmax
a
f
(∑

s′

S(s′|s, a)U+(s), N(s, a)
)

− N(s, a) is the number of times a was taken in s,

� The exploration function f (u, n) determines how greed (preference for high
values of a) is traded off against curiosity (preference for low values of n)

− f should increase with expected utility u,

− f should decrease with the number of trials n,

� Simple exploration function

− ∀n < N : f (u, v) = R+ (the best possible reward obtainable),

− otherwise: f (u, v) = u.
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pAction selection strategies – summary

� An exact solution to exploration-exploitation problem usually intractable,

� fortunately, it is possible to come up with a reasonable exploration method
that eventually leads to optimal behavior of the agent,

� any such exploration method needs to be Greedy in the Limit of Infinite Ex-
ploration (GLIE)

− must try each action in each state an unbounded number of times so that
it does not miss any optimal action,

− must eventually become greedy,

− example: ε-greedy, optimistic utility.
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pExploratory active ADP agent in a grid world

� The only change in the exploratory active ADP agent

− use a GLIE action selection scheme.
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The rapid error development in a typical sequence of trials. The policy the agent converges in this particular sequence.
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pQ-learning

� Now, we will aim at the active agent using TD learning

− model-free, simpler to implement and often more computationally efficient,

� however, state utilities without model not sufficient for changing the policy

− remember: agreedynext = argmaxa
∑

s′ S(s′|s, a)U(s′)
� we will learn the optimal action-value function Q(s, a) instead of U(s)

− Q(s, a) is the expected value of taking action a in state s and following
the optimal policy thereafter,

U(s) = max
a
Q(s, a)

� the next action in s with Q-values

agreedynext = argmax
a
Q(s, a)
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pQ-learning

� The utility update rule with the state utilities

U(s) = R(s) + γmax
a

∑
s′

S(s′|s, a)U(s′)

� after the substitution for U by Q

Q(s, a) = R(s) + γ
∑
s′

S(s′|s, a)U(s′)

Q(s, a) = R(s) + γ
∑
s′

S(s′|s, a)max
a′

Q(s′, a′)

� at the moment, we still have the active ADP with the environment model

− the model not needed for action selection,

− however, employed in Q-value update.
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pQ-learning without a model

� The model removal step stemming from TD principle

Uπ(s) = Uπ(s) + α(R(s) + γUπ(s′)− Uπ(s))

Qπ(s, a) = Qπ(s, a) + α(R(s) + γmax
a′

Qπ(s′, a′)−Qπ(s, a))

� the new estimate of Q(s, a) stems from the old Q(s, a) modified by the
weighted difference between the old Q(s, a) estimate and its new noisy sample
after taking action a,

� SARSA is a sibling approach with a slightly modified update rule

Qπ(s, a) = Qπ(s, a) + α(R(s) + γQ(s′, a′)−Qπ(s, a))

− a′ is the action actually taken in s′,

− e.g., in exploratory agents, a′ is different from the greedy action considered
in Q-learning.
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pTD Q-Learning algorithm

initialize Q(s, a) arbitrarily for all a and s
initialize s and r to the current state and reward observed

loop

select action a according to explore/exploit policy

the selection is based on current Q(s, a)
receive immediate reward r’ and observe the new state s’

use the tuple (s,a,s’,r’) to update Q(s, a)
Q(s, a)=Q(s, a)+α(r’+γ max_a’Q(s’,a’)-Q(s, a))

s=s’,r=r’

end loop

eventually return the greedy policy π
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pNotes on Q-learning

� Q-learning vs SARSA

− Q-learning employs off-policy update

∗ it better learns for misleading policies,

− SARSA’s on-policy update is more realistic,

∗ works with utility that matches the policy.

� Q-learning convergence

− guaranteed to converge to an optimal policy,

− very general procedure because it is model free,

− converges slower than ADP agent in terms of epochs
it does not enforce consistency among values through the model.
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pGeneralization and approximation

� up to know trivial tasks with small state and action spaces,

� if the number of states grows utility/value functions must be approximated

− in general, by learning from examples,

− generalization assumes continuous and “reasonable” value functions,

− states characterized by feature vectors φs,

− practical benefits – time and memory,

− principal benefits – generalization for unseen states.

Sutton, Barto: Reinforcement Learning: An Introduction
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pLinear approximation

� select a type of approximation function and optimize its parameters θ(t)

− let us start with linear approximation:

Ûθ(s) = θTφ(s) =
∑
i

θiφi(s)

− we will employ online least squares method

∗ the least squares error in the j-th trial (uj(s) observed in the trial)

Ej(s) =
(Ûθ(s)− uj(s))2

2

∗ change the parameters to decrease the error, the Widrow-Hoff rule

θi ← θi − α
∂Ej(s)

∂θi
= θi + α(uj(s)− Ûθ(s))

∂Ûθ(s)

∂θi
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pLinear approximation

� These ideas can also be plugged directly into TD learning and Q-learning

� e.g., the original Q-learning update rule modifying directly Q value estimates

Qπ(s, a) = Qπ(s, a) + α(R(s) + γmax
a′

Qπ(s′, a′)−Qπ(s, a))

� changes into a new update rule for the parameters of the approximate function

θi ← θi + α(R(s) + γmax
a′

Q̂θ(s
′, a′)− Q̂θ(s, a))

∂Q̂θ(s, a)

∂θi

− in fact, we only substitute for uj(s) from the previous slide,

− a complication could be that features represent functions of both states
and actions,

� proven to converge for passive learning and linear approximation function.
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pOther popular ways of approximation

� select a type of approximation function and optimize its parameters θ(t)

− non linear optimization by a neural network (e.g., Q network)

∗ use a single-layer network,

− deep learning (e.g., deep Q network (DQN))

∗ use a multi-layer (convolutional) network instead,

∗ allow the network to train itself using its previous experience,

∗ utilizing a second “target” network to compute target Q-values during
updates,

− policy gradient methods

∗ focus on performance rather than utility estimation.

� demo.
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pSummary

� RL applied by agents in unknown environments,

� RL can be viewed as the ultimate level of AI

− only minimum is given and the agent must learn the rest,

� multi-armed bandit represents a case of single non-sequential decision making

− exploration and exploitation needs to be balanced,

� full RL applies in sequential decision making

− model-based – active adaptive dynamic programming,

− model-free – TD Q-learning,

� function approximation necessary for real/large state spaces.
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