B4M36ESW: Efficient software

Lecture 7: Memory, caches, allocators

Michal Sojka

sojkaml@fel.cvut.cz

CTU

ft

UNIVERSITY
IN PRAGUE

April 10, 2017

1/33

Outline

Why is DRAM slow?

Caches
m Architecture
m Memory performance characteristics
m Dynamic memory allocation
m Matrix multiplications

Caches in multi-processor systems

2/33

Why is DRAM slow?

Outline

Why is DRAM slow?

3/33

Why is DRAM slow?

Types or RAM

m Static RAM (SRAM) \ Vdd J
. M?. b= M4
m Fast but expensive N
m 6 transistors per bit My 6
m Dynamic RAM (DRAM) BL = BL

m Capacitor — (Dis)Charging is not instantaneous
m Reading discharge capacitor (write after read)

L
] Compromlse: capaCIty/S|ze/power consumptlon DL %L
Charge Discharge - C
100 = =

% oo . \
Fpad 4 \
=70 4 \
Y 60 \
& 50 7 \
o
2 40 I N
§ 30 ’ \
2 20 l \\

10 —

0

1RC 2RC 3RC 4RC 5RC 6RC 7RC 8RC 9RC

4/33

Why is DRAM slow?

DRAM access

Addressing individual cells is impractical
(many wires)

m Chip is organized in rows anc.i columns - I .
(and banks), address is multiplexed i | T | T
. B I I T 1

m In the chip, row and column weg T H g T T
multiplexors select the proper lines “é T 1 - -+

. . b
according to address bits z ESR T E .
. . . & LT LT LT LT
m Operations happen in parallel in many SR I R N
chips to work with the whole data word —’_? —rﬁI 4_'% 4_'%

(64 bits) N
Writing: New value is put on data, e
stored when RAS and CAS are selected

m It takes some time to charge the
capacitors

Column Address Selection

Dgt a

5/33

Why is DRAM slow?

DRAM access details

m Access protocol is synchronous s
(SDRAM) — there is a clock L
signal, CAS L/

m CLK provided by memory

controller (FSB frequency — typ. Add“"“

t (el

800-1600 MHz) {_'RCD ——
m Double/Quad-pumped bQ o
m Max. speed: 64bit x 8 x 200MHz = 12.8 GB/s
m Not reachable in reality

m Data sent in bursts!

6/33

Why is DRAM slow?

JEDEC standard DDR4 module

Peak Timings,

Memory | I/O bus | Data Module transfer | CL- CAS
Standard clock clock rate name rate tRCD- latency
name (MHz) (MHz) | (MT/s) (MB/s) | tRP (ns)
10-10-10 | 125
DDR4-1600J* | 200 800 1600 PC4-12800 | 12800 11-11-11 | 13.75
DDR4-1600K 12-12-12 | 15
DDR4-1600L

12-12-12 | 12.857
DDR4-1866L* | 233.33 933.33 1866.67 | PC4-14900 | 14933.33 | 13-13-13 | 13.929
DDR4-1866M 14-14-14 | 15

DDR4-1866N

14-14-14 | 13.125
DDR4-2133N* | 266.67 1066.67 | 2133.33 | PC4-17000 | 17066.67 | 15-15-15 | 14.063

DDR4-2133P 16-16-16 | 15
DDR4-2133R

15-15-15 | 125
DDR4-2400P* | 300 1200 2400 PC4-19200 | 19200 16-16-16 | 13.33
DDR4-2400R 18-18-18 | 15
DDR4-2400U

Source: Wikipedia
7/33

Caches

Outline

Caches
m Architecture
m Memory performance characteristics
m Dynamic memory allocation
m Matrix multiplications

8/33

Caches

Cache terminology

m Spatial locality: accessed memory objects are close to each other
m Code: inner loops
m Data: structures (reading of one field is often followed by of other files)
m Temporal locality: The same data will be used multiple times in a
short period of time

m Code: loops
m Data: e.g. Digital filter coefficients are accessed every sampling period

9/33

Caches

Cache terminology

m Spatial locality: accessed memory objects are close to each other
m Code: inner loops
m Data: structures (reading of one field is often followed by of other files)

m Temporal locality: The same data will be used multiple times in a
short period of time

m Code: loops
m Data: e.g. Digital filter coefficients are accessed every sampling period
m Cache hit: memory request is serviced from the cache, without going
to higher level memory
m Cache miss: opposite of cache hit

m cold miss, capacity miss, conflict miss
m true sharing miss, false sharing miss

9/33

Caches

Cache terminology

m Spatial locality: accessed memory objects are close to each other
m Code: inner loops
m Data: structures (reading of one field is often followed by of other files)

m Temporal locality: The same data will be used multiple times in a
short period of time

m Code: loops
m Data: e.g. Digital filter coefficients are accessed every sampling period
m Cache hit: memory request is serviced from the cache, without going
to higher level memory
m Cache miss: opposite of cache hit
m cold miss, capacity miss, conflict miss
m true sharing miss, false sharing miss
m Cache line eviction: cache line is removed from the cache to make
space for new data

m Cache replacement policy: LRU, pseudo LRU, random

9/33

Caches » Architecture

CPU caches — big picture

All loads/stores go through cache E B“S'

CPU <— Cache: fast connection I

Cache «— Main memory: FSB Bus Cache _

It is advantage to have separate
caches for instructions and data

i Bus

L1i Cache

10/33

Caches » Architecture

Cache associativity

m Direct-mapped cache
m simple

m Fully associative cache
m ideal

m Set associative cache
E compromise

11/33

Caches » Architecture

Direct-mapped cache

m Each memory location
Cache has just one cache line
associated.

m Memory locations at
multiples of cache size
always collide!

64 B

12/33

Caches » Architecture

Self-evicting of code

void outer_func() {
Memory for (int i = 0; i < 1000; i++)

inner_func();
outer func() 3
Cache void inner_func() {
// do something
}
fnner_func()
64 B

13/33

Caches » Architecture

Self-evicting of code

void outer_func() {
Memory for (int i = 0; i < 1000; i++)
inner_func();

outer func()

}

Cache void inner_func() {
// do something
¥
inner_tunc() m Two cache misses every
iteration (instruction
[
64 B fetches)!

= Solution: Improve code
layout by putting related
(and hot) functions together.

__attribute__((hot)) void outer_func();
__attribute__((hot)) void inner_func();

13/33

Caches » Architecture

Write behavior

m Cache policies

Write-through
Write-back

Write-Combining

14 /33

Caches » Architecture

Set associative caches

Memory

Cache
Way 0 Way 1

Sets

S
64 B
m Majority of today's hardware

m Typically 8-16 ways

m Cache replacement policy

15/33

Caches » Memory performance characteristics

Sequential access

20 T T T T T T T T
Cycles/access =——4+—
15 | : char A[65536%1024]; |
for (rep = 0; rep < REP; rep++)
for (i = 0; i < WSS; i += 64)
" Ali]++;
o
g 10 T
O

16384 65536

0 L L L L
256 1024 4096

4 16 64
WSS [KiB]

Intel i7-2600
16 /33

Caches » Memory performance characteristics

Random access

250 T I T I T T T I ! I ! I ! I
Cycles/access =—+—
200 .
, 150 char A[65536%1024]; - ' .
% mask = (1<<WSS) - 1;
3 for (rep = 0; rep < REP; rep++) {
100 - addr = ((rep + 523)*253573) & mask; .
Aladdr]++;
¥
50 =
[S R T U TR T TR T R 1
0 LB ¥ T 1 | | | |
1 4 16 64 256 1024 4096 16384 65536
WSS [KiB] Ini
Core i7-2600

17 /33

Caches » Memory performance characteristics

Random access

250 T I T I T T T I ! I ! I ! I
Cycles/access =—+—
L1 misses —x—
200 .
" 150 char A[65536%1024]; : i —
% mask = (1<<WSS) - 1;
3 for (rep = 0; rep < REP; rep++) {
100 - addr = ((rep + 523)#*253573) & mask; .
Aladdr]++;
¥
| | | |

1 4 16 64 256 1024 4096 16384 65536
WSS [KiB] In

Core i7-2600, (perf counters not in scale)
17 /33

Caches » Memory performance characteristics

Random access

250 T I T I T I ! I ! I ! I ! I
Cycles/access =—+—
L1 misses —X—
L2 misses —k—
200 .
L, 1501 char A[65536%1024]; - ' .
% mask = (1<<WSS) - 1;
3 for (rep = 0; rep < REP; rep++) {
100 - addr = ((rep + 523)*253573) & mask; .
Aladdr]++;
¥
}\ - | | |
1 4 16 64 256 1024 4096 16384 65536
WSS [KiB] Ini

Core i7-2600, (perf counters not in scale)
17 /33

Caches » Memory performance characteristics

Random access

250 T I T I T T T T T I ! I ! I
Cycles/access =—+—
L1 misses —*—
L2 misses —K—

200 | L3 misses — i+

150 - char A[65536%1024];

mask = (1<<WSS) - 1;

for (rep = 0; rep < REP; rep++) {
100 - addr = ((rep + 523)*253573) & mask; .
Aladdr]++;

Cycles

i 1 o O o O e B o A |
s

1 4 16 64 256 1024 4096 16384 65536
WSS [KiB] In

Core i7-2600, (perf counters not in scale)

17 /33

Caches » Memory performance characteristics

Random access

250 T I T I T T T T T I ! I ! I
Cycles/access =—+—
L1 misses —*—
L2 misses — K —
200 | L3 misses — 11—]
TLB misses
" 150 char A[65536%1024]; —
% mask = (1<<WSS) - 1;
3 for (rep = 0; rep < REP; rep++) {
100 - addr = ((rep + 523)#*253573) & mask; .
Aladdr]++;
¥
50 - 1 1
/7L
O-H—L.L_.L_-_-_-_-_-_-_ ' 3 ; —>r<,f i
1 4 16 64 256 1024 4096 16384 65536
WSS [KiB] Int

Core i7-2600, (perf counters not in scale)
17 /33

Caches » Memory performance characteristics

Translation Lookaside Buffer (TLB)

Caches translation of virtual to physical address

On TLB miss, page walk has to be performed (2 to 5 levels)
Intel i7-2600 has 512 L2 TLBs = 512x4 kB = 2 MB
Improvement: use so called huge pages (1 page = 2 MB, PS=1)

Linear Address (Virtual address)
47 39 38 3029 2120 12 11 0
[PML4 TDirectoryPtr | Directory | Table | Offset |

9
9

L L PTE
Page-Directory- PDE with PS$=0

Pointer Table 20 Page Table
Page-Directory

PDPTE 40

Je

| PML4E

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging
18/33

Caches » Memory performance characteristics

Cache-related preemption delay

m When a thread is preempted by another thread, it likely evicts some
data from the cache.
m After preemption ends, the threads experiences a lot of cache misses!

m Certain (older) architectures has to flush TLBs when switching
address spaces (processes).

m Modern architectures allow tagging TLBs with address space identifier
(ASID, PCID, ...)

m High-performance software tries to limit preemptions.
m Beware — limiting preemption increases response time!

19/33

Caches » Dynamic memory allocation

malloc, new

m Memory allocators try to maintain spacial locality
m Hard to achieve when heap is fragmented
m after many new/delete operations

20/33

Caches » Dynamic memory allocation

Data structures and cache friendliness

m Arrays + sequential access — nice

m Dynamically allocated linked lists — depends on memory allocator
(probably like random access)

m Search trees — random access

21/33

Caches » Matrix multiplications

Matrix multiplication

Naive implementation

A mem:8 cache hit:0 B mem:8 cache hit:0 C mem:8 cache hit:7

mem:24 cache hits:7 =29%
for (1 = 0; 1 < N; ++1)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
Cl[i][j] = A[il[k] * B[k][j1;

22/33

Caches » Matrix multiplications

Matrix multiplication

Naive implementation, memory layout

A mem:8 cache hit:0
[EEEEES - AN NN

B mem:8 cache hit:0 X
NN NN EEEEEEE EEEEEEE EEEEEEE SN EESEEEE - EEEEEEE)

C mem:8 cache hit:7
[AN |

mem:24 cache hits:7 =29%

for (1 = 0; 1 < N; ++1)
for (j = 0; j < N; ++j)
for (k = 0; k < N; ++k)
C[il[j] = A[i][k] * B[k][j]1;

22/33

Caches » Matrix multiplications

Implementation with transposition

C mem:8 cache hit:7

A mem:8 cache hit:0 B mem:8 cache hit:0

mem:24 cache hits:7 =29%

double B[N][N]; for (i = 0; i < N; ++i)
for (i = 0; 1 < N; ++1i) for (j = 0; j < N; ++j)
for (j = 0; j < N; ++j) for (k = 0; k < N; ++k)
B[i]1[j] = Bsrc[jl[i]l; Clil[j]1 = A[i1[x] = B[kI[j]l;

23/33

Caches » Matrix multiplications

Implementation with transposition

A mem:210 cache hit:178

B mem:210 cache hit:0

mem:630 cache hits:361 =57%

double B[N][N]; for (i = 0; i < N; ++1i)
for (i = 0; i < Nj ++i) for (j = 0; j < N; ++j)
for (j = 05 j < Nj ++3) for (k = 0; k < N; ++k)
B[i]l [j] = Bsrc[jl[il; Clil[j]1 = A[il[k] = BIk1[jl;

Performance: naive: 100%, transposed: 23,4%

23/33

Caches » Matrix multiplications

Tiled implementation

A mem:128 cache hit:96 B mem:128 cache hit:112 C mem:128 cache hit:96

mem:384 cache hits:304 =79%

for (k1 = 0; k1 < N; k += tile)
for (j1 = 0; j1 < N; j += tile)
for (i1 = 0; i1l < N; i += tile)
for (i = il; i < i1l + tile; ++i)
for (j = jl; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
Cl[il[j1 += A[il[k] = BLk1[jl;

m Each “tile” fits into the cache

m Performance: 17.3% of naive
implementation (9.5% with
vectorized operations)

24 /33

Caches » Matrix multiplications

Tiled implementation and L1 cache

A mem:126 L1 hit:94 L2 hit:94 B mem:126 L1 hit:0 L2 hit:110 C mem:126 L1 hit:94 L2 hit:94

mem:378 L1 hits:188 =49% L2 hits:298 =78%

for (k1 =03 ki <N; k += tile) m No L1 cache hitin B
for (j1 = 0; j1 < N; j += tile)

for (i1 = 0; i1l < N; i += tile)
for (i = il; i < i1l + tile; ++i)
for (j = jl; j < j1 + tile; ++j)
for (k = k1; k < k1 + tile; ++k)
Cl[il[j1 += A[il[k] = BLk1[jl;

25/33

Caches » Matrix multiplications

Two-level tiled implementation

A mem:126 L1 hit:62 L2 hit:94 B mem:126 L1 hit:94 L2 hit:110 C mem:126 L1 hit:63 L2 hit:94

mem:378 L1 hits:219 =57% L2 hits:298 =78%

for (k2 = 0; k2 < N; k2 += tile2) -
for (j2 = 0; j2 < N; j2 += tile2) m No L1 cache hitin B
for (i2 = 0; i2 < N; i2 += tile2)

for (k1 = k2; k1 < k2 + tile2; k += tilel)

for (j1 = j2; ji < j2 + tile2; j += tilel)

for (il = i2; il < i2 + tile2; i += tilel)
for (i = il; i < il + tilel; ++i)

for (j = j1; j < j1 + tilel; ++j)

for (k = k1; k < k1 + tilel; ++k)
Clil[3] += Alil[x] = BLkI[j];

26/33

Caches » Matrix multiplications

Recursive matrix multiplication

[C11|C12]:[A11|A12]X[311|512}:
Cor | Caz Az | Ax Bo1 | B2

[A11Bi1 | A1 Bro] o [A12Bo1 | A12B2 }
A21B11 | A2 B2 A2 Bo1 | AxzB2

N x N multiplication = 8 multiply-add of (N/2) x (N/2) multiplications

27/33

Caches in multi-processor systems

Outline

Caches in multi-processor systems

28/33

Caches in multi-processor systems

Cache coherency

In symmetric multi-processor (SMP) systems, caches of the CPUs cannot
work independently from each other.

m The maintaining of uniform view of memory for all processor is called
“cache coherency”

m If some processor writes to a cache line, other processors have to clean
the corresponding cache line from their caches.

m Cache synchronization protocol: MESI(F)

m A dirty cache line is not present in any other processor’s cache.
m Clean copies of the same cache line can reside in arbitrarily many
caches.

20/33

Caches in multi-processor systems

True sharing

m Program is slow because cache line with shared data travel from one
core to another.

std: :atomic_int32_t counter;

void thread_cpu0() { void thread_cpul() {
while (true) while (true)
counter++; counter++;
} }

30/33

Caches in multi-processor systems

True sharing

m Program is slow because cache line with shared data travel from one
core to another.

m Typically, each mutex is shared between CPUs.

std: :atomic_int32_t counter;

void thread_cpu0() { void thread_cpul() {
while (true) while (true)
counter++; counter++;
} }

30/33

Caches in multi-processor systems

True sharing

m Program is slow because cache line with shared data travel from one
core to another.
m Typically, each mutex is shared between CPUs.

m When that is a problem (too much contention), make locking more
fine-grained or change your data structure and/or algorithms to be

more cache friendly.
std: :atomic_int32_t counter;
void thread_cpu0() { void thread_cpul() {

while (true) while (true)

counter++; counter++;

30/33

All CPUs executing atomic increment of global variable

Store
Buffer

$

Store
Buffer

$

I

I

Store

Buffer

$

|

Stor

Store

'7 | = | -
nterconnect

Store

Stor

Interconnect
! —

Store
uffer

$

|

$

|

Store
uffer

Store
uffer

Buffer L Buffer Buffer Buffer Buffer
$ s s isllls
i1 | - | -
nterconnect
Interconnect Memory
Interconnect
u—
$ s J[]s ||
Store Store Store Store
uffer, uffer uffer uffer
» » »

33

Caches in multi-processor systems

False sharing

m Data accessed from different CPUs is not shared but happen to be
stored in a single cache line.
// Per-CPU counters
std::atomic_int32_t counter_cpu0;
std::atomic_int32_t counter_cpul;

void thread_cpu0() { void thread_cpul() {
while (true) while (true)
counter_cpuO++; counter_cpul++;
} }

32/33

Caches in multi-processor systems

False sharing

m Data accessed from different CPUs is not shared but happen to be

stored in a single cache line.
// Per-CPU counters (FIXME: Do not hardcode cache line stize)
std::atomic_int32_t counter_cpul __attribute__((align(64)));
std::atomic_int32_t counter_cpul __attribute__((align(64)));

void thread_cpu0() { void thread_cpul() {
while (true)

while (true)
counter_cpuO++; counter_cpul++;

32/33

Conclusion

References

m Ulrich Drepper, “What Every Programmer Should Know About
Memory", 2007/11 [online],
http://people.redhat.com/drepper/cpumemory . pdf

33/33

http://people.redhat.com/drepper/cpumemory.pdf

	Why is DRAM slow?
	Caches
	Architecture
	Memory performance characteristics
	Dynamic memory allocation
	Matrix multiplications

	Caches in multi-processor systems

