
ROS: Robotic Operation System

Libor Wagner

Centre for Machine Perception
Czech Technical University

wagnelib@cmp.felk.cvut.cz

April 2, 2013

1 / 16

Outline

1 ROS Introduction
Design goals
Basic concepts
Software development
Community and resources

2 ROS and CloPeMa
Useful packages and libraries
ROS Release

2 / 16

ROS Introduction

Open Source framework (middleware) for robot software
development.

Started at Stanford Artificial Intelligence Lab, further
developed at Willow Garage.

Strong emphasis on distributed computation and development.

Active community, widespread use.

3 / 16

Design goals

Peer-to-peer ROS components, potentially on different hosts, are
connected in peer-to-peer topology.

Tool-based Microkernel design, with large number of small tools,
used to build, run and analyse ROS components.

Multi-lingual ROS components can be written in various
languages.

Thin Drivers and algorithms are encouraged to be written
in separated libraries.

Open-Source ROS is distributed under terms of the BSD license.

4 / 16

Basic concepts

Node A single computation unit (component).

Message Data structure used by nodes to communicate.

Topic Broadcast communication between nodes.

Service Synchronous communication between nodes.

5 / 16

Node

Single process that performs particular computation.

ROS system is composed from large number of nodes.

Communicate with each other by passing messages, through
topic or service.

Connection between two nodes is accomplished through
roscore, which acts as a name server.

6 / 16

Message

Strictly typed data structure.

Support standard primitive types
(integer, float, boolean, etc.) and
arrays.

Messages can be composed of
other messages and arrays of
messages.

Header message

uint32 seq

time stamp

string frame id

Composite message

Header header

int32 x

int32 y

7 / 16

Topic and service

Topic

A named broadcast stream of messages.
Generally there can be more publishers of the same topic.
Publishers are aware if someone is subscribed.
Topic is defined by name and message type.

Service

A named synchronous communication.
There can be just one node providing a service of some name.
Calling service is generally blocking.
Service is defined by name and two message types – request
and reply.

8 / 16

Programing languages and platform

Each ROS node can be written in different language.

Message type is defined in plain text using Message
Description Language and code is generated for each
supported language.

ROS currently support C++, Python and Lisp.

Other languages are supported unofficially: Java, Haskell . . .

Ubuntu linux is the only supported platform.

Support for other platforms, including Windows, is
experimental.

9 / 16

Supporting tools and packages

rviz Visualisation tool.

rosbag Allows to record all communication between nodes
and then play it back.

rosdep Tracks external dependencies.

rxgraph Visualise graph of ROS system.

rosparam Store and manipulate data on the ROS parameter
server.

...

10 / 16

Community and resources

ROS is supported by active community.

ROS documentation wiki (www.ros.org/wiki/)

ROS user forum (answers.ros.org).

There is already around 600 packages in ROS distribution.

More packages can be found on ROS page
(www.ros.org/browse).

11 / 16

www.ros.org/wiki/
answers.ros.org
www.ros.org/browse

Image Transport

Provide support for image transport in arbitrary
representation.

The complexity is abstracted from the developer, which only
sees standard image message.

Particular transport representations are provided by plugins.

Currently supported representations are raw, JPEG/PNG
compression, and Theora for streaming video.

http://www.ros.org/wiki/image_transport
12 / 16

http://www.ros.org/wiki/image_transport

ActionLib

Provide preemptible task execution.

Communication build on top of ROS messages.

Action is specified by three messages: goal, feedback and
result.

http://www.ros.org/wiki/actionlib
13 / 16

http://www.ros.org/wiki/actionlib

SMACH

Stand-alone Python library for
structured plan execution.

Based on hierarchical state
machines.

State is defined by set of possible
outcomes.

Simple states are encapsulated in
containers, that can be used as
states.

http://www.ros.org/wiki/smach
14 / 16

http://www.ros.org/wiki/smach

PCL: Point Cloud Library

Stand-alone C++ library for 3D point
cloud processing.

Filtering
Registration
Segmentation
Feature extraction
Keypoints detection

http://www.ros.org/wiki/pcl
15 / 16

http://www.ros.org/wiki/pcl

ROS Release

ROS uses six month release cycle similar
to Ubuntu.

Current ROS release is Fuerte Turtle.

Compatibility between releases is not
guaranteed.

16 / 16

ROS: Example

Libor Wagner

Centre for Machine Perception
Czech Technical University in Prague

wagnelib@cmp.felk.cvut.cz

April 2, 2013

1 / 7

Outline

1 Model problem description

2 Components
Perception in ROS
Planning in ROS
Rocot control in ROS

2 / 7

Model problem description

Pick-and-place task.

Unknown position of the objects.

Possibility of collisions.

3 / 7

Components

Perception Detect objects in the image captured by camera and
provides their position.

Planning Plan a collision free trajectory to pick and place
detected object.

Execution Execute the trajectory on the robot.

Perception

Planning

Execution

4 / 7

Perception in ROS

Camera driver

output: Image
package: camera drivers, camera1394

Image processing pipeline

input: Image
output: ObjectPosition
package: image pipeline, pcl

camera
driver

image
processing
pipeline

5 / 7

Planning in ROS

Inverse kinematics

input: Pose
output: RobotConfiguration
reference: OpenRave, OMPL,
CTU

Trajectory planning

input: RobotConfiguration
output: Trajectory
reference: arm navigation

Collision checking

input: RobotConfiguration,
CollsionModel
output: OK/NotOK
references: arm navigation

trajectory
planning

collision
checking

inverse
kinematic

6 / 7

Robot control in ROS

Research robots

supported: PR2, Nao, TurtleBot, ...
reference: Willow Garage

Industrial robots

supported: ABB, Adept, Fanuc,
Motoman, Universal
promised: Comau, Kuka
reference: ROS Industrial

7 / 7

	ROS Introduction
	Design goals
	Basic concepts
	Software development
	Community and resources

	ROS and CloPeMa
	Useful packages and libraries
	ROS Release

	2013-04WagnerROS-example.pdf
	Model problem description
	Components
	Perception in ROS
	Planning in ROS
	Rocot control in ROS

