FSM Learning II

Radek Mařík

Czech Technical University Faculty of Electrical Engineering
Department of Telecommunication Engineering
Prague CZ

January 2, 2018

Outline

(1) FSM Learning

- FSM Learning Overview
- Angluin's Algorithm
- Example
(2) Hidden Markov Model
(3) Markov Decision Process
- Introduction
- Utility Function, Policy
- Value Iteration
- Policy Iteration
- Conclusions

Finite State Machine

A finite-state machine is a sextuple $\left(S, \Sigma, \Gamma, s_{0}, \delta, \lambda\right)$, where

- S is a finite nonempty set of states,
- Σ is an input alphabet (a finite nonempty set of symbols),
- Γ is an output alphabet (a finite nonempty set of symbols),
- s_{0} is an initial state, $s_{0} \in S$,
- δ is a state-transition function: $\delta: S \times \Sigma \rightarrow S$,
- λ is an output function: $\lambda: S \times \Sigma_{\epsilon} \rightarrow \Gamma_{\epsilon}$.

Additional designations:

- Σ^{*} is the set of all strings (words) over the input alphabet,
- Γ^{*} is the set of all strings (words) over the output alphabet,
- Alphabet X^{*} always contains ϵ and $\forall x \in X^{*}: \epsilon \cdot x=x=x \cdot \epsilon$.
- Thus X^{*} is always nonempty and it is also countable because X is countable.

Goal

- A system trying to figure out the effects its actions have on its environment...
- It performs actions.
- It gets observations.
- It tries to make an internal model of what is happening.
- Let's model the world as a DFA.

Applications

- Communication protocol learning,
- Hidden process learning,
- WWW application learning,
- Black box proprietary behavior identification,
- Software implementation identification.

Learning a Language

- Inferring finite automata is analogous to learning a language
- There is no way to distinguish between two automata that recognize the same language, without examining the state structure.
- We focus on finding the minimum equivalent automata.
- It has been shown that the only classes of languages that can be learned from positive data only are classes which include no infinite language.

Active Learning

- Passive learning - a set X is given and we cannot modify it.
- NP problem
- Active learning - a set X can be selected and it can be modified during a learning process.
- P problem

Teacher ${ }^{[H 0 n 13]}$

The teacher has to be able to answer two kinds of queries

- Membership query - Yes/No.
- In a membership query the learner selects a word $w \in \Sigma^{*}$ and
- the teacher gives the answer whether or not $w \in L$.
- Equivalence query (counterexamples) - Yes/a counterexample string.
- In an equivalence query the learner selects a hypothesis automaton \mathcal{H}, and the teacher answers whether or not L is the language of \mathcal{H}.
- If yes, then the algorithm terminates.
- If no, then the teacher gives a counterexample, i.e., a word in which L differs from the language of \mathcal{H}.

An issue of whether or not we have a reset button.

Active Learning with a Teacher ${ }^{[\text {Hon } 13]}$

A learning architecture with a minimally adequate teacher.

An architecture with a degraded teacher working as an interface.

Angluin's Algorithm - Top Level View

- Iteratively, the algorithm builds a DFA using membership queries, then presents the teacher with the DFA as a solution.
- If the DFA is accepted, the algorithm is finished. Otherwise, the teacher responds with a counter-example, a string that the DFA presented would either accept or reject incorrectly.
- The algorithm uses the counter-example to refine the DFA, going back to the first step.

Angluin's Algorithm - Control Structures

States and Experiments

The algorithm uses two sets,

- S for states,
- S... access sequences to states
- S • $A \ldots$. sequences to exercise all transitions
- E for experiments (distinguishing sequences), and
- one observation table, T, where
- elements of $S \cup S \bullet A$ form rows, and
- elements of E form columns - the values of each cell is the outcome of a membership test for the concatenation of the row and column strings.

Observation Table ${ }^{\text {[nassas s.s.asa, hoons] }}$

Definition 1.1

Let $\mathcal{E}=(A$, accept $)$ be an accepting environment.
Observation table of environment \mathcal{E} is an ordered triple $O T=(S, E, \mathrm{~T})$, where

- $S \subseteq A^{*}, S \neq \emptyset, S$ finite, S is prefix closed.
- $E \subseteq A^{*}, E \neq \emptyset, E$ finite, E is suffix closed.
- T is a function $(S \cup S \bullet A) \times E \rightarrow\{0,1\}$.
- The set S is called input set.
- E is a distinguishing set.

Počáteční tabulku pozorování ${ }^{[H o n 13]}$

- $\mathrm{V} L^{*}$ algoritmu nejprve inicializujeme počáteční tabulku pozorování $O T=(S, E, \mathrm{~T})$ tak, že $S=\{\epsilon\}, E=\{\epsilon\}$.
- Dále vytvoříme frontu otázek přís/ušnosti, kterou tvoří všechny dvojice $s \cdot e$, kde $s \in S \cup S \cdot A$ a $e \in E$.
- Pomocí učitele dostane odpověd z množiny $\{0,1\}$, zda-li $s \cdot e$ patří do rozeznávaného jazyka a tuto hodnotu uložíme na místo $\mathrm{T}(s, e)$ v tabulce pozorování.
- Odlišné řádky v sekci S tabulky definují stavy možného automatu.

Tabulku pozorování - uzavřenost, konzistence

Definition 1.2

Tabulka pozorování $O T=(S, E, T)$ je uzavřena, pokud $(\forall t \in S \cdot A)(\exists s \in S)(s \stackrel{E}{\sim} t)$.

Tabulka je konzistentní, pokud $(\forall s, t \in S, s \stackrel{E}{\sim} t) \Longrightarrow(\forall a \in A)(s \cdot a \stackrel{E}{\sim} t \cdot a)$.

- Kontrolu uzavřenosti a konzistence provádíme po vyprázdnění fronty otázek příslušnosti.

		E	
		ϵ	a
S	ϵ	0	1
	a	1	0
	b	0	0
	$a a$	0	0
	$a b$	0	1
	$b a$	0	1
	$b b$	1	0

Tabulku pozorování - modifikace ${ }^{\text {[Honl3] }}$

- Pokud není $O T=(S, E, T)$ uzavřená, pak
(1) najdeme $t \in S \cdot A$, že $s \not{ }^{E} t$ pro všechna $s \in S$.
(2) toto t pak přidáme do množiny S a frontu otázek příslušnosti rozširíńme o $t \cdot a \cdot e$ pro všechna $a \in A$ a $e \in E$.
- Jestliže není $O T$ konzistentní,
(1) najedeme $s, t \in S, e \in E$ a $a \in A$, že $s \stackrel{E}{\sim} t$, ale $T(s \cdot a, e) \neq T(t \cdot a, e)$.
(2) do rozlišovací množiny E přidáme slovo $a \cdot e$
(3) frontu otázek příslušnosti rozšíríme o $s^{\prime} \cdot e$ pro všechna $s^{\prime} \in S \cup S \cdot A$.
(9) Je zřejmé, že po tomto zásahu již nebude v nové tabulce pozorování platit $s \stackrel{E}{\sim} t$.

L^{*} algoritmus

(1) Inicializace počáteční tabulky pozorování $O T=(S, E, \mathrm{~T})$.
(2) Pomocí fronty otázek příslušnosti vyplníme celou tabulku pozorování.
(3) Kontrola uzavřenosti a konzistence tabulky.
(1) Pokud není $O T$ uzavřená, rozširíríme množinu S o $t \in S \cdot A$, že s 尻 t pro všechna $s \in S$. Rozširíme frontu otázek příslušnosti a pokračujeme bodem 2.
(2) Pokud není $O T$ konzistentní, rozšǐííme množinu E o slovo $a \cdot e, e \in E$ a $a \in A$ tak, že existují $s, t \in S$, že $s \stackrel{E}{\sim} t$, ale $\mathrm{T}(s \cdot a, e) \neq \mathrm{T}(t \cdot a, e)$. Rozširíme frontu otázek přílušnosti a pokračujeme bodem 2.
(9) Vytvoříme návrh \mathcal{A} prostředí a zeptáme se učitele na jeho správnost.
(5) Pokud učitel vrátí protipříklad $c \in A^{+}$, smažeme návrh \mathcal{A}, přidáme do množiny S všechny prvky množiny $\operatorname{pref}(c)$, rozširíme frontu otázek příslušnosti a pokračujeme bodem 2.
(6) Návrh \mathcal{A} přijímáme za automat realizující prostředí \mathcal{E}.

FSM Conjecture ${ }^{[A n g 66, ~ A n g 87]}$

- An acceptor $M(S, E, T)$
- over the alphabet A,
- with state set Q,
- initial state q_{0},
- accepting states F, and
- transition function δ :

$$
\begin{align*}
& Q=\{\operatorname{row}(s): s \in S\} \tag{1}\\
& q_{0}=\operatorname{row}(\epsilon) \tag{2}\\
& F=\{\operatorname{row}(s): s \in S \\
&\quad \text { and } T(s)=T(s \bullet \epsilon)=1\}, \tag{3}\\
& \delta(\operatorname{row}(s), a)=\operatorname{row}(s \bullet a) \tag{4}
\end{align*}
$$

- $S=\{\epsilon, a, b, b b\}, E=\{\epsilon, a\}$

T_{4}	E		
	ϵ	a	
S	ϵ	1	0
	a	0	1
	b	0	0
	$b b$	1	0
$S \bullet A$	$a a$	1	0
	$a b$	0	0
	$b a$	0	0
	$b b a$	0	1
		$b b b$	0

M_{2} / δ	a	b
q_{0}	q_{1}	q_{2}
q_{1}	q_{0}	q_{2}
q_{2}	q_{2}	q_{0}

L^{*} Algorithm - Example I Angat

Example 1

The unknown regular automaton accepts the set of all strings over $\{a, b\}$ with an even number of a 's and an even number of b 's.

The initial observation table, $S=E=\{\epsilon\}$

T_{1}	E	
	ϵ	
S	ϵ	1
$S \cdot A$	a	0
	b	0

- The observation table T_{1} is consistent, but not closed, since $\operatorname{row}(a)$ is distinct from $\operatorname{row}(\epsilon)$.
- L^{*} chooses to move the string a to the set S and then queries the strings $a a$ and $a b$ to construct the observation table T_{2}.

L^{*} Algorithm - Example II

Example 2

The unknown regular automaton accepts the set of all strings over $\{a, b\}$ with an even number of a 's and an even number of b 's.

M_{1} / δ	a	b
q_{0}	q_{1}	q_{1}
q_{1}	q_{0}	q_{1}

- The observation table T_{2} is consistent and closed.
- L^{*} makes a conjecture of the acceptor M_{1}.
- The initial state of M_{1} is q_{0} and the final state is also $q 0$.
- The teacher selects a counterexample $b b$ (rejected by M_{1}).

L^{*} Algorithm - Example III ${ }^{\text {Ancs87] }}$

- The observation table T_{3} is closed, but not consistent, since $\operatorname{row}(a)=\operatorname{row}(b)$ but $\operatorname{row}(a a) \neq \operatorname{row}(b a)$.
- L^{*} adds the string a to E and queries the strings $a a a, a b a, b a a$, $b b a a$, and $b b b a$ to construct the table T_{4}.

L^{*} Algorithm - Example IV ${ }^{\text {[Ang87] }}$

- The observation table T_{2} is consistent and closed.
- L^{*} makes a conjecture of the acceptor M_{2}.
- The initial state of M_{2} is q_{0} and the final state is also $q 0$.
- The teacher selects a counterexample $a b b$ (accepted by M_{1}, but not in U).

L^{*} Algorithm - Example $V^{[\text {Angs8] }}$

T_{5}	E		
	ϵ	a	
S	ϵ	1	0
	a	0	1
	b	0	0
	$b b$	1	0
	$a b b$	0	0
	$a b b$	0	1
A	$a a$	1	0
	$b a$	0	0
	$b b a$	0	1
	$b b b$	0	0
	$a b a$	0	0
	$a b b a$	1	0
	$a b b b$	0	0

$$
\begin{aligned}
& S=\{\epsilon, a, b, b b, a b, a b b\} \\
& E=\{\epsilon, a\}
\end{aligned}
$$

- The observation table T_{5} is closed but not consistent since $\operatorname{row}(b)=\operatorname{row}(a b)$ but row $(b b) \neq \operatorname{row}(a b b)$.
- L^{*} adds the string b to E and queries the strings $a a b, b a b, b b a b, b b b b, a b a b$, $a b b a b$, and $a b b b b$ to construct the table T_{6}.

L^{*} Algorithm - Example VI

T_{6}		E		
		ϵ	a	b
S	ϵ	1	0	0
	a	0	1	0
	b	0	0	1
	$b b$	1	0	0
	$a b$	0	0	0
	$a b b$	0	1	0
$S \bullet A$	$a a$	1	0	0
	$b a$	0	0	0
	$b b a$	0	1	0
	$b b b$	0	0	1
	$a b a$	0	0	1
	$a b b a$	1	0	0
	$a b b b$	0	0	0

$$
\begin{aligned}
& S=\{\epsilon, a, b, b b, a b, a b b\} \\
& E=\{\epsilon, a, b\} \\
& \qquad \begin{array}{|c||c|c|}
\hline M_{3} / \delta & a & b \\
\hline \hline q_{0} & q_{1} & q_{2} \\
\hline q_{1} & q_{0} & q_{3} \\
\hline q_{2} & q_{3} & q_{0} \\
\hline q_{3} & q_{2} & q_{1} \\
\hline
\end{array}
\end{aligned}
$$

- The observation table T_{2} is consistent and closed.
- L^{*} makes a conjecture of the acceptor M_{2}.
- The initial state of M_{3} is q_{0} and the final state is also $q 0$.
- The teacher replies to this conjecture with yes.
- M_{3} is a correct acceptor for the language U.

L* Algorithm Performance

- The example:
- \# MQ: 25
- \# EQ: 3
- Real protocols

Protocol	States	Letters	MQ	EQ
Abp-lossy	3	3	22	2
Buff3	9	3	202	5
Dekker-2	2	3	7	1
Sched2	13	6	691	7
VMnew	11	4	513	7

- Synthetic data

States	Letters	MQ	EQ
100	25	40000	15

- At present up to 1000 states.

Hidden Markov Model (HMM) - Overview

(1) Many observation sequences \rightarrow FSM model learning

- Iterative Baum-Welch algorithm ${ }^{[B P 66]}$ - Expectation-Maximization (EM)
(2) FSM Model + an observation sequence
\rightarrow the probability of the state sequence
- The Viterbi algorithm
(3) FSM Model + a sequence part \rightarrow the most probable states

Sequential Decisions ${ }^{\text {[RN10] }}$

- Achieving agent's objectives often requires multiple steps.
- A rational agent does not make a multi-step decision and carry it out without considering revising it based on future information.
- Subsequent actions can depend on what is observed
- What is observed depends on previous actions
- Agent wants to maximize reward accumulated along its course of action
- What should the agent do if environment is non-deterministic?
- Classical planning will not work
- Focus on state sequences instead of action sequences

Sequential Decision Problems ${ }^{[\text {Iakk0] }}$

Search

Planning

Markov decision problems (MDPs)

Partially observable MDPs (POMDPs)

Markov Decision Process ${ }^{\text {PMMO] }}$

Markov Decision Process ${ }^{[P M 10]}$

Definition (Markov Decision Process)

A Markov Decision Process (MDP) is a 5-tuple $\left\langle S, A, T, R, s_{0}\right\rangle$ where

- S is a set of states
- A is a set of actions
- $T\left(S, A, S^{\prime}\right)$ is the transition model
- $R(S)$ is the reward function
- s_{0} is the initial state
- Transitions are Markovian

$$
P\left(S_{n} \mid A, S_{n-1}\right)=P\left(S_{n} \mid A, S_{n-1}, S_{n-2}, \ldots, S_{0}\right)=T\left(S_{n-1}, A, S_{n}\right)
$$

Example: Simple Grid World ${ }^{[\text {RNNO] }}$

Simple 4×3 environment

- States $S=\{(i, j) \mid 1 \leq i \leq 4 \wedge 1 \leq j \leq 3\}$
- Actions $A=\{u p$, down, left, rigth $\}$
- Reward function

$$
R(s)= \begin{cases}-0.04 & (\text { small penalty }) \text { for nonterminal states } \\ \pm 1 & \text { for terminal states }\end{cases}
$$

- Transition model $T\left((i, j), a,\left(i^{\prime}, j^{\prime}\right)\right)$ given by (b)

Utility Function ${ }^{[R N 10, ~ J a k 0] ~}$

- Utility function captures agent's preferences
- In sequential decison-making, utility is a function over sequences of states
- Utility function accumulates rewards:
- Additive rewards (special case):

$$
U_{h}\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right)=R\left(s_{0}\right)+R\left(s_{1}\right)+R\left(s_{2}\right)+\ldots
$$

- Discounted rewards

$$
U_{h}\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right)=R\left(s_{0}\right)+\gamma R\left(s_{1}\right)+\gamma^{2} R\left(s_{2}\right)+\ldots
$$

where $\gamma \in[0,1]$ is the discount factor

- Discounted rewards for $\gamma<1$ finite even for infinite horizons (see next slide)
- No other way of assigning utilities to state sequences is possible assuming stationary preferences between state sequences

Policy

- A stationary policy is a function

$$
\pi: S \rightarrow A
$$

- Optimal policy is a function maximizing expected utility

$$
\pi^{\star}=\underset{\pi}{\arg \max } E\left[U\left(\left[s_{0}, s_{1}, s_{2}, \ldots\right]\right) \mid \pi\right]
$$

- For an MDP with stationary dynamics and rewards with infinite horizon, there always exists an optimal stationary policy
- no benefit to randomize even if environment is random

Example: Optimal Policies in the Grid World ${ }^{[\text {RNNo, Jakio] }}$

- (a) Optimal policy for state penalty $R(s)=-0.04$
- (b) Dependence on penalty

Decision-making Horizon ${ }^{[R N 10, ~ J a k 0] ~}$

- A finite horizon means that there is a finite deadline N after which nothing matters (the game is over)
- $\forall k \geq 1 \quad U_{h}\left(\left[s_{0}, s_{1}, \ldots, s_{N+k}\right]\right)=U_{h}\left(\left[s_{0}, s_{1}, \ldots, s_{N}\right]\right)$
- The optimal policy is non-stationary, i.e., it could change over time as the deadline approaches.
- An infinite horizon means that there is no deadline
- The optimal policy is stationary \Leftarrow there is no reason to behave differently in the same state at different times
- Easier than the finite horizon case
- terminate / absorbing states - agents stay there forever receiving zero reward at each step

Solving MDPs ${ }^{\text {RNNO O BR0] }}$

- How do we find the optimum policy π^{*} ?
- Two basic techniques:
(1) value iteration - compute utility $U(s)$ for each state and use is for selecting best action
(2) policy iteration - represent policy explicitly and update it in parallel to the utility function

Utility of State ${ }^{[\text {RNNOO Jak0] }}$

- Utility of a state under a given policy π :

$$
U^{\pi}(s)=E\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \mid \pi, s_{0}=s\right]
$$

- True utility $U(s)$ of a state is the utility assuming optimum policy π^{*}

$$
U(s):=U^{\pi^{*}}(s)
$$

- Reward $R(s)$ is "short-term" reward for being in s; utility $U(s)$ is a "long-term" total reward from s onwards
- Selecting the optimum action according to the MEU (Maximum Expected Utility) principle

$$
\pi^{*}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
$$

Bellman Equation

- Definition of utility of states leads to a simple relationship among utilities of neighboring states
- The utility of a state is the immediate reward for the state plus the expected discounted utility of the next state, assuming the agent chooses the optimal action

Definition (Bellman equation (1957))

$$
U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right) \quad \forall s \in S
$$

- One equation per state $\Rightarrow n$ non-linear equations for n unknowns
- The solution is unique

Iterative Solution

- Analytical solution is not possible \Rightarrow iterative approach

Definition (Bellman update)

$$
U_{i+1}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right) \quad \forall s \in S
$$

- Dynamic programming: given an estimate of the k-step lookahead value function, determine the $k+1$-step lookahead utility function.
- If applied infinitely often, guaranteed to reach an equilibrium and the final utility values are the solutions to the Bellman equations
- Value iteration propagates information through the state space by means of local updates.

Value Iteration Algorithm ${ }^{\text {[RN10, Jak0] }}$

Input: $m d p$, a MDP with states S, transition model T, reward function R, discount γ
Input: ϵ, the maximum error allowed in the utility of a state Local variables: U, U^{\prime}, vectors of utilities for states in S, initially zero Local variables: δ, the maximum change in the utility of any state in an iteration

repeat

$U \leftarrow U^{\prime} ; \delta \leftarrow 0 ;$
foreach state $s \in S$ do

$$
U^{\prime}[s] \leftarrow R[s]+\gamma \max _{a} \sum_{S^{\prime}} T\left(s, a, s^{\prime}\right) U\left[s^{\prime}\right] ;
$$

if $\left|U^{\prime}[s]-U[s]\right|>\delta$ then
$|\delta \leftarrow| U^{\prime}[s]-U[s] \mid ;$
end
end
until $\delta<\epsilon(1-\gamma) / \gamma$;
return U

Value Iteration Example ${ }^{[R N 10, ~ P M 10, ~ J a k 10] ~}$

(a) $\gamma=0.6$

(b) $\gamma=0.9$

(c) $\gamma=0.99$

- 4 movement actions; 0.7 chance of moving in the desired direction, 0.1 in the others
- $R=-1$ for bumping into walls; four special rewarding states
- +10 (at position (9,8); 9 across and 8 down),
- one worth +3 (at position $(8,3)$),
- one worth -5 (at position $(4,5)$) and
- one -10 (at position $(4,8)$)

Policy Iteration

- Search for optimal policy and utility values simultaneously
- Alternates between two steps:
(1) policy evaluation - recalculates values of states $U_{i}=U^{\pi_{i}}$ given the current policy π_{i}
(2) policy improvement/iteration - calculates a new MEU policy π_{i+1} using one-step look-ahead based on U_{i}
- Terminates when the policy improvement step yields no change in the utilities.

Policy Iteration Algorithm

Input: $m d p$, a MDP with states S, transition model T
Local variables: U, a vector of utilities for states in S, initially zero Local variables: π, a policy vector indexed by state, initially random repeat
$U \leftarrow$ Policy-Evaluation $(\pi, U, m d p)$;
unchanged? \leftarrow true;
foreach state $s \in S$ do
if $\max _{a} \sum_{S^{\prime}} T\left(s, a, s^{\prime}\right) U\left[s^{\prime}\right]>\sum_{S^{\prime}} T\left(s, \pi(s), s^{\prime}\right) U\left[s^{\prime}\right]$ then $\pi(s) \leftarrow \arg \max _{a} \sum_{S^{\prime}} T\left(s, a, s^{\prime}\right) U\left[s^{\prime}\right] ;$
end
unchanged? \leftarrow false;
end
until unchanged?;
return π

Policy Evaluation

- Simplified Bellman equations:

$$
U_{i}(s)=R(s)+\gamma \sum_{S^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right) U_{i}\left(s^{\prime}\right) \quad \forall s \in S
$$

- The equations are now linear \Rightarrow can be solved in $O\left(n^{3}\right)$

Modified Policy Iteration

- Policy iteration often converges in few iterations but each iteration is expensive
- \Leftarrow has to solve large systems of linear equations
- Main idea: use iterative approximate policy evaluation
- Simplified Bellman update:

$$
U_{i+1}(s) \leftarrow R(s)+\gamma \sum_{S^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right) U_{i}\left(s^{\prime}\right) \quad \forall s \in S
$$

- Use a few steps of value iteration (with π fixed)
- Start from the value function produced in the last iteration
- Often converges much faster than pure value iteration or policy iteration (combines the strength of both approaches)
- Enables much more general asynchronous algorithms
- e.g. Prioritized sweeping

Choosing the Right Technique

- Many actions? \Rightarrow policy iteration
- Already got a fair policy? \Rightarrow policy iteration
- Few actions, acyclic? \Rightarrow value iteration
- Modified policy iteration typically the best

Conclusions ${ }^{[\text {RNNo, Jakto] }}$

- MDPs generalize deterministic state space search to stochastic environments
- At the expense of computational complexity
- An optimum policy associates an optimal action with every state
- Iterative techniques used to calculate optimum policies
- basic: value iteration and policy iteration
- improved: modified policy iteration, asynchronous policy iteration
- Further issues
- large state spaces - use state space approximation
- partial observability (POMDPs) - need to consider information gathering; can be mapped to MDPs over continous belief space

Literatura

[Ang86] Dana Angluin. Learning regular sets from queries and counter-examples. Technical Report YALEU/DCS/TR-464, Yale University, Department of Computer Science, March 1986.
[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87-106, 1987.
[BP66] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state markov chains. The Annals of Mathematical Statistics, 37(6):1554-1563, 1966.
[Hon13] Marek Honzírek. Aktivní učení a automaty. Master's thesis, Katedra matematiky, Fakulta jaderná a fyzikálně inženýrská, ČVUT, Praha, 2013.
[Jak10] Michal Jakob. A3M33UI decision theory essentials, lecture notes. http://cw.felk.cvut.cz/doku.php/courses/a3m33ui/prednasky, February 2010.
[PM10] David Poole and Alan Mackworth. Artificial intelligence, foundations of computational agents. http://artint.info/slides/slides.html, 2010.
[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Pre, third edition, 2010.
[Sha08] Muzammil Muhammad Shahbaz. Reverse Engineering Enhanced State Models of Black Box Software Components to support Integration Testing. PhD thesis, Institut Polytechnique de Grenoble, 2008.

