FSM Learning II

Radek Mařík

Czech Technical University
Faculty of Electrical Engineering
Department of Telecommunication Engineering
Prague CZ

January 2, 2018

Outline

- FSM Learning
 - FSM Learning Overview
 - Angluin's Algorithm
 - Example
- 2 Hidden Markov Model
- Markov Decision Process
 - Introduction
 - Utility Function, Policy
 - Value Iteration
 - Policy Iteration
 - Conclusions

Finite State Machine

A finite-state machine is a sextuple $(S, \Sigma, \Gamma, s_0, \delta, \lambda)$, where

- S is a finite nonempty set of states,
- ullet Σ is an input alphabet (a finite nonempty set of symbols),
- \bullet Γ is an output alphabet (a finite nonempty set of symbols),
- s_0 is an initial state, $s_0 \in S$,
- δ is a state-transition function: $\delta: S \times \Sigma \to S$,
- λ is an output function: $\lambda: S \times \Sigma_{\epsilon} \to \Gamma_{\epsilon}$.

Additional designations:

- Σ^* is the set of all strings (words) over the input alphabet,
- ullet Γ^* is the set of all strings (words) over the output alphabet,
- Alphabet X^* always contains ϵ and $\forall x \in X^* : \epsilon \cdot x = x = x \cdot \epsilon$.
- ullet Thus X^* is always nonempty and it is also countable because X is countable.

Goal

- A system trying to figure out the effects its actions have on its environment...
 - It performs actions.
 - It gets observations.
 - It tries to make an internal model of what is happening.
- Let's model the world as a DFA.

Applications

- Communication protocol learning,
- Hidden process learning,
- WWW application learning,
- Black box proprietary behavior identification,
- Software implementation identification.

Learning a Language

- Inferring finite automata is analogous to learning a language
- There is no way to distinguish between two automata that recognize the same language, without examining the state structure.
- We focus on finding the minimum equivalent automata.
- It has been shown that the only classes of languages that can be learned from positive data only are classes which include no infinite language.

Active Learning

- Passive learning a set X is given and we cannot modify it.
 - NP problem
- Active learning a set X can be selected and it can be modified during a learning process.
 - P problem

Teacher [Hon13]

The teacher has to be able to answer two kinds of queries

- Membership query Yes/No.
 - ullet In a membership query the learner selects a word $w\in \Sigma^*$ and
 - the teacher gives the answer whether or not $w \in L$.
- Equivalence query (counterexamples) Yes/a counterexample string.
 - In an equivalence query the learner selects a hypothesis automaton \mathcal{H} , and the teacher answers whether or not L is the language of \mathcal{H} .
 - If yes, then the algorithm terminates.
 - If no, then the teacher gives a counterexample, i.e., a word in which L differs from the language of \mathcal{H} .

An issue of whether or not we have a **reset** button.

Active Learning with a Teacher [Hon13]

A learning architecture with a minimally adequate teacher.

An architecture with a degraded teacher working as an interface.

Angluin's Algorithm - Top Level View

- Iteratively, the algorithm builds a DFA using membership queries, then presents the teacher with the DFA as a solution.
- If the DFA is accepted, the algorithm is finished. Otherwise, the teacher responds with a counter-example, a string that the DFA presented would either accept or reject incorrectly.
- The algorithm uses the counter-example to refine the DFA, going back to the first step.

Angluin's Algorithm - Control Structures

States and Experiments

The algorithm uses two sets,

- S for states.
 - ullet S ... access sequences to states
 - $S \bullet A \dots$ sequences to exercise all transitions
- E for experiments (distinguishing sequences), and
- one observation table, T, where
 - ullet elements of $S \cup S ullet A$ form rows, and
 - ullet elements of E form columns the values of each cell is the outcome of a membership test for the concatenation of the row and column strings.

Observation Table [Ang86, Sha08, Hon13]

Definition 1.1

Let $\mathcal{E} = (A, \text{accept})$ be an accepting environment.

Observation table of environment \mathcal{E} is an ordered triple OT = (S, E, T), where

- $S \subseteq A^*$, $S \neq \emptyset$, S finite, S is prefix closed.
- $\bullet \ E\subseteq A^* \text{, } E\neq \emptyset \text{, } E \text{ finite, } E \text{ is suffix closed}.$
- T is a function $(S \cup S \bullet A) \times E \rightarrow \{0,1\}.$
- The set S is called *input set*.
- E is a distinguishing set.

		i	E
		ϵ	a
	ϵ	0	1
S	a	1	0
	b	0	0
	aa	0	0
$S \bullet A$	ab	0	1
$S \bullet A$	ba	0	1
	bb	1	0

Počáteční tabulku pozorování [Hon13]

- V L^* algoritmu nejprve inicializujeme počáteční tabulku pozorování $OT=(S,E,\mathbf{T})$ tak, že $S=\{\epsilon\},\ E=\{\epsilon\}.$
- Dále vytvoříme frontu otázek příslušnosti, kterou tvoří všechny dvojice $s \cdot e$, kde $s \in S \cup S \cdot A$ a $e \in E$.
- \bullet Pomocí učitele dostane odpověď z množiny $\{0,1\}$, zda-li $s\cdot e$ patří do rozeznávaného jazyka a tuto hodnotu uložíme na místo $\mathrm{T}(s,e)$ v tabulce pozorování.
- Odlišné řádky v sekci S tabulky definují stavy možného automatu.

		E
		ϵ
S	ϵ	1
$S \cdot A$	a	0
$\mathcal{S} \cdot \mathcal{A}$	b	0

Tabulku pozorování - uzavřenost, konzistence

Definition 1.2

Tabulka pozorování OT = (S, E, T) je **uzavřena**, pokud $(\forall t \in S \cdot A)(\exists s \in S)(s \stackrel{E}{\sim} t)$.

Tabulka je konzistentní, pokud

$$(\forall s, t \in S, s \overset{E}{\sim} t) \implies (\forall a \in A)(s \cdot a \overset{E}{\sim} t \cdot a).$$

 Kontrolu uzavřenosti a konzistence provádíme po vyprázdnění fronty otázek příslušnosti.

		1	E
		ϵ	a
	ϵ	0	1
S	a	1	0
	b	0	0
	aa	0	0
$S \bullet A$	ab	0	1
$S \bullet A$	ba	0	1
	bb	1	0

Tabulku pozorování - modifikace [Hon13]

- ullet Pokud není $OT=(S,E,\mathrm{T})$ uzavřená, pak
 - najdeme $t \in S \cdot A$, že $s \not\stackrel{E}{\sim} t$ pro všechna $s \in S$.
 - 2 toto t pak přidáme do množiny S a frontu otázek příslušnosti rozšíříme o $t \cdot a \cdot e$ pro všechna $a \in A$ a $e \in E$.
- Jestliže není OT konzistentní,
 - **1** najedeme $s,t \in S$, $e \in E$ a $a \in A$, že $s \stackrel{E}{\sim} t$, ale $T(s \cdot a,e) \neq T(t \cdot a,e)$.
 - $oldsymbol{2}$ do rozlišovací množiny E přidáme slovo $a\cdot e$
 - $oldsymbol{0}$ frontu otázek příslušnosti rozšíříme o $s' \cdot e$ pro všechna $s' \in S \cup S \cdot A$.

L^* algoritmus [Ang86, Sha08, Hon13]

- Inicializace počáteční tabulky pozorování OT = (S, E, T).
- 2 Pomocí fronty otázek příslušnosti vyplníme celou tabulku pozorování.
- Sontrola uzavřenosti a konzistence tabulky.
 - **9** Pokud není OT uzavřená, rozšíříme množinu S o $t \in S \cdot A$, že $s \not\stackrel{E}{\sim} t$ pro všechna $s \in S$. Rozšíříme frontu otázek příslušnosti a pokračujeme bodem 2.
 - Pokud není OT konzistentní, rozšíříme množinu E o slovo $a \cdot e, \ e \in E$ a $a \in A$ tak, že existují $s, t \in S$, že $s \overset{E}{\sim} t$, ale $\mathrm{T}(s \cdot a, e) \neq \mathrm{T}(t \cdot a, e)$. Rozšíříme frontu otázek příslušnosti a pokračujeme bodem 2.
- lacktriangle Vytvoříme návrh ${\cal A}$ prostředí a zeptáme se učitele na jeho správnost.
- **9** Pokud učitel vrátí protipříklad $c \in A^+$, smažeme návrh \mathcal{A} , přidáme do množiny S všechny prvky množiny $\operatorname{pref}(c)$, rozšíříme frontu otázek příslušnosti a pokračujeme bodem 2.
- **1** Návrh \mathcal{A} přijímáme za automat realizující prostředí \mathcal{E} .

FSM Conjecture [Ang86, Ang87]

- ullet An acceptor M(S,E,T)
 - over the alphabet A,
 - with state set Q,
 - initial state q_0 ,
 - accepting states F, and
 - transition function δ :

$$Q = \{ \mathsf{row}(s) : s \in S \}, \tag{1}$$

$$q_0 = \mathsf{row}(\epsilon),\tag{2}$$

$$F = \{ \mathsf{row}(s) : s \in S \}$$

and
$$T(s) = T(s \bullet \epsilon) = 1$$
, (3)

$$\delta(\mathsf{row}(s), a) = \mathsf{row}(s \bullet a). \tag{4}$$

•
$$S = \{\epsilon, a, b, bb\}, E = \{\epsilon, a\}$$

T_4		E		
		ϵ	a	
	ϵ	1	0	
C	a	0	1	
S	b	0	0	
	bb	1	0	
	aa	1	0	
	ab	0	0	
$S \bullet A$	ba	0	0	
	bba	0	1	
	bbb	0	0	

M_2/δ	a	b
q_0	q_1	q_2
q_1	q_0	q_2
q_2	q_2	q_0

$|L^*|$ Algorithm - Example I $^{ extstyle e$

Example 1

The unknown regular automaton accepts the set of all strings over $\{a,b\}$ with an even number of a's and an even number of b's.

The initial observation table, $S=E=\{\epsilon\}$

$\mid T_1 \mid$		E
11		ϵ
S	ϵ	1
$S \cdot A$	a	0
$S \cdot A$	b	0

- The observation table T_1 is consistent, but not closed, since row(a) is distinct from $row(\epsilon)$.
- L^* chooses to move the string a to the set S and then queries the strings aa and ab to construct the observation table T_2 .

$|L^*|$ Algorithm - Example II $^{ extstyle extstyle$

Example 2

The unknown regular automaton accepts the set of all strings over $\{a,b\}$ with an even number of a's and an even number of b's.

$$S = \{\epsilon, a\}, E = \{\epsilon\}$$

$$\begin{bmatrix}
T_2 & \frac{E}{\epsilon} \\
S & a & 0 \\
a & 0 \\
S \bullet A & aa & 1 \\
ab & 0
\end{bmatrix}$$

M_1/δ	a	b
q_0	q_1	q_1
q_1	q_0	q_1

- ullet The observation table T_2 is consistent and closed.
- L^* makes a conjecture of the acceptor M_1 .
- The initial state of M_1 is q_0 and the final state is also q_0 .
- The teacher selects a counterexample bb (rejected by M_1).

L^* Algorithm - Example III $^{ ext{ iny [Ang87]}}$

$$S = \{\epsilon, a, b, bb\}, E = \{\epsilon\}$$

T_3		E
13		ϵ
	ϵ	1
C	a	0
S	b	0
	bb	1
	aa	1
	ab	0
$S \bullet A$	ba	0
	bba	0
	bbb	0

- The observation table T_3 is closed, but not consistent, since row(a) = row(b) but $row(aa) \neq row(ba)$.
- L^* adds the string a to E and queries the strings aaa, aba, baa, bbaa, and bbba to construct the table T_4 .

L^st Algorithm - Example IV $^{ extstyle extstyle$

 $S = \{\epsilon, a, b, bb\}, E = \{\epsilon, a\}$

T_4		E	
14	14		a
	ϵ	1	0
S	a	0	1
5	b	0	0
	bb		0
	aa	1	0
	ab	0	0
$S \bullet A$	ba	0	0
	bba	0	1
	bbb	0	0

M_2/δ	a	b
q_0	q_1	q_2
q_1	q_0	q_2
q_2	q_2	q_0

- ullet The observation table T_2 is consistent and closed.
- L^* makes a conjecture of the acceptor M_2 .
- The initial state of M_2 is q_0 and the final state is also q_0 .
- The teacher selects a counterexample abb (accepted by M_1 , but not in U).

L^* Algorithm - Example V [Ang87]

T_5		E	
		ϵ	a
	ϵ	1	0
	a	0	1
S	b	0	0
5	bb	1	0
	ab	0	0
	abb	0	1
	aa	1	0
	ba	0	0
$S \bullet A$	bba	0	1
	bbb	0	0
	aba	0	0
	abba	1	0
	abbb	0	0

$$S = \{\epsilon, a, b, bb, ab, abb\}$$
$$E = \{\epsilon, a\}$$

- The observation table T_5 is closed but not consistent since row(b) = row(ab) but $row(bb) \neq row(abb)$.
- L^* adds the string b to E and queries the strings aab, bab, bbab, bbab, abab, abbab, and abbab to construct the table T_6 .

L^* Algorithm - Example VI [Ang87]

E				
T_6		E		
		ϵ	a	b
	ϵ	1	0	0
	a	0	1	0
S	b	0	0	1
	bb	1	0	0
	ab	0	0	0
	abb	0	1	0
	aa	1	0	0
	ba	0	0	0
$S \bullet A$	bba	0	1	0
	bbb	0	0	1
	aba	0	0	1
	abba	1	0	0
	abbb	0	0	0
		•		

$$S = \{\epsilon, a, b, bb, ab, abb\}$$

$$E = \{\epsilon, a, b\}$$

M_3/δ	a	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_3	q_0
q_3	q_2	q_1

- The observation table T₂ is consistent and closed.
- ullet L* makes a conjecture of the acceptor M_2 .
- The initial state of M_3 is q_0 and the final state is also q_0 .
- The teacher replies to this conjecture with yes.
 - ullet M_3 is a correct acceptor for the language U

L^* Algorithm Performance

- The example:
 - # MQ: 25
 - # EQ: 3
- Real protocols

Protocol	States	Letters	MQ	EQ
Abp-lossy	3	3	22	2
Buff3	9	3	202	5
Dekker-2	2	3	7	1
Sched2	13	6	691	7
VMnew	11	4	513	7

Synthetic data

States	Letters	MQ	EQ
100	25	40000	15

• At present up to 1000 states.

Hidden Markov Model (HMM) - Overview

- - Iterative Baum-Welch algorithm [BP66] Expectation-Maximization (EM)
- **②** FSM Model + an observation sequence
 - ightarrow the probability of the state sequence
 - The Viterbi algorithm
- **IDENTIFY STATE S**

Sequential Decisions [RN10]

- Achieving agent's objectives often requires multiple steps.
- A rational agent does not make a multi-step decision and carry it out without considering revising it based on future information.
 - Subsequent actions can depend on what is observed
 - What is observed depends on previous actions
- Agent wants to maximize reward accumulated along its course of action
- What should the agent do if environment is non-deterministic?
 - Classical planning will not work
 - Focus on state sequences instead of action sequences

Sequential Decision Problems [Jak10]

Markov Decision Process [PM10]

Markov Decision Process [PM10]

Definition (Markov Decision Process)

A Markov Decision Process (MDP) is a 5-tuple $\langle S, A, T, R, s_0 \rangle$ where

- S is a set of states
- A is a set of actions
- T(S, A, S') is the transition model
- \bullet R(S) is the reward function
- s_0 is the initial state
- Transitions are Markovian

$$P(S_n|A, S_{n-1}) = P(S_n|A, S_{n-1}, S_{n-2}, \dots, S_0) = T(S_{n-1}, A, S_n)$$

Example: Simple Grid World [RN10]

Simple 4x3 environment

- States $S = \{(i, j) | 1 \le i \le 4 \land 1 \le j \le 3\}$
- Actions $A = \{up, down, left, rigth\}$
- Reward function

$$R(s) = \left\{ \begin{array}{ll} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{array} \right.$$

• Transition model T((i, j), a, (i', j')) given by (b)

Utility Function [RN10, Jak10]

- Utility function captures agent's preferences
 - In sequential decison-making, utility is a function over sequences of states
- Utility function accumulates rewards:
 - Additive rewards (special case):

$$U_h([s_0, s_1, s_2, \dots]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

Discounted rewards

$$U_h([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

where $\gamma \in [0,1]$ is the discount factor

- \bullet Discounted rewards for $\gamma < 1$ finite even for infinite horizons (see next slide)
- No other way of assigning utilities to state sequences is possible assuming stationary preferences between state sequences

Policy [RN10, Jak10]

A stationary policy is a function

$$\pi:S\to A$$

Optimal policy is a function maximizing expected utility

$$\pi^* = \arg\max_{\pi} E[U([s_0, s_1, s_2, \dots]) | \pi]$$

- For an MDP with stationary dynamics and rewards with infinite horizon, there always exists an optimal stationary policy
 - no benefit to randomize even if environment is random

Example: Optimal Policies in the Grid World [RN10, Jak10]

- (a) Optimal policy for state penalty R(s) = -0.04
- (b) Dependence on penalty

Decision-making Horizon [RN10, Jak10]

- A finite horizon means that there is a finite deadline N after which nothing matters (the game is over)
 - $\forall k \geq 1$ $U_h([s_0, s_1, \dots, s_{N+k}]) = U_h([s_0, s_1, \dots, s_N])$
 - The optimal policy is non-stationary, i.e., it could change over time as the deadline approaches.
- An infinite horizon means that there is no deadline
 - The optimal policy is stationary

 — there is no reason to behave differently in the same state at different times
 - Easier than the finite horizon case
- terminate / absorbing states agents stay there forever receiving zero reward at each step

Solving MDPs [RN10, Jak10]

- How do we find the optimum policy π^* ?
- Two basic techniques:
 - lacksquare value iteration compute utility U(s) for each state and use is for selecting best action
 - 2 policy iteration represent policy explicitly and update it in parallel to the utility function

Utility of State [RN10, Jak10]

• Utility of a state under a given policy π :

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi, s_{0} = s\right]$$

ullet True utility U(s) of a state is the utility assuming optimum policy π^*

$$U(s) := U^{\pi^*}(s)$$

- Reward R(s) is "short-term" reward for being in s; utility U(s) is a "long-term" total reward from s onwards
- Selecting the optimum action according to the MEU (Maximum Expected Utility) principle

$$\pi^*(s) = \operatorname*{arg\,max}_{a} \sum_{s'} T(s,a,s') U(s')$$

Bellman Equation [RN10, Jak10]

- Definition of utility of states leads to a simple relationship among utilities of neighboring states
- The utility of a state is the immediate reward for the state plus the expected discounted utility of the next state, assuming the agent chooses the optimal action

Definition (Bellman equation (1957))

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s') \quad \forall s \in S$$

- One equation per state $\Rightarrow n$ non-linear equations for n unknowns
 - The solution is unique

Iterative Solution [RN10, Jak10]

Analytical solution is not possible ⇒ iterative approach

Definition (Bellman update)

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U_i(s') \quad \forall s \in S$$

- Dynamic programming: given an estimate of the k-step lookahead value function, determine the k+1-step lookahead utility function.
- If applied infinitely often, guaranteed to reach an equilibrium and the final utility values are the solutions to the Bellman equations
- Value iteration propagates information through the state space by means of local updates.

Value Iteration Algorithm [RN10, Jak10]

Input: mdp, a MDP with states S, transition model T, reward function R, discount γ

Input: ϵ , the maximum error allowed in the utility of a state **Local variables:** U, U', vectors of utilities for states in S, initially zero **Local variables:** δ , the maximum change in the utility of any state in

repeat

```
U \leftarrow U' : \delta \leftarrow 0:
foreach state s \in S do
     U'[s] \leftarrow R[s] + \gamma \max_{a} \sum_{S'} T(s, a, s') U[s'];
    if |U'[s] - U[s]| > \delta then
     \delta \leftarrow |U'[s] - U[s]|;
     end
end
```

an iteration

until $\delta < \epsilon(1-\gamma)/\gamma$; return U

Value Iteration Example [RN10, PM10, Jak10]

- 4 movement actions; 0.7 chance of moving in the desired direction, 0.1 in the others
- R = -1 for bumping into walls; four special rewarding states
 - +10 (at position (9,8); 9 across and 8 down),
 - one worth +3 (at position (8,3)),
 - one worth -5 (at position (4,5)) and
 - one -10 (at position (4,8))

- Search for optimal policy and utility values simultaneously
- Alternates between two steps:
 - policy evaluation recalculates values of states $U_i = U^{\pi_i}$ given the current policy π_i
 - 2 policy improvement/iteration calculates a new MEU policy π_{i+1} using one-step look-ahead based on U_i
- Terminates when the policy improvement step yields no change in the utilities.

Policy Iteration Algorithm [RN10, Jak10]

```
Input: mdp, a MDP with states S, transition model T
Local variables: U, a vector of utilities for states in S, initially zero
Local variables: \pi, a policy vector indexed by state, initially random
repeat
    U \leftarrow \text{Policy-Evaluation}(\pi, U, mdp);
    unchanged? \leftarrow true;
    foreach state s \in S do
        if \max_a \sum_{s'} T(s, a, s') U[s'] > \sum_{s'} T(s, \pi(s), s') U[s'] then
          \pi(s) \leftarrow \arg\max_{a} \sum_{S'} T(s, a, s') U[s'];
        end
        unchanged? \leftarrow \mathsf{false};
    end
until unchanged?;
return \pi
```


Policy Evaluation [RN10, Jak10]

Simplified Bellman equations:

$$U_i(s) = R(s) + \gamma \sum_{S'} T(s, \pi_i(s), s') U_i(s') \quad \forall s \in S$$

• The equations are now linear \Rightarrow can be solved in $O(n^3)$

Modified Policy Iteration [RN10, Jak10]

- Policy iteration often converges in few iterations but each iteration is expensive
 - \Leftarrow has to solve large systems of linear equations
- Main idea: use iterative approximate policy evaluation
 - Simplified Bellman update:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{S'} T(s, \pi_i(s), s') U_i(s') \quad \forall s \in S$$

- Use a few steps of value iteration (with π fixed)
- Start from the value function produced in the last iteration
- Often converges much faster than pure value iteration or policy iteration (combines the strength of both approaches)
- Enables much more general asynchronous algorithms
 - e.g. Prioritized sweeping

Choosing the Right Technique [RN10, Jak10]

- Many actions?⇒ policy iteration
- Already got a fair policy? ⇒ policy iteration
- Few actions, acyclic? ⇒ value iteration
- Modified policy iteration typically the best

- MDPs generalize deterministic state space search to stochastic environments
 - At the expense of computational complexity
- An optimum policy associates an optimal action with every state
- Iterative techniques used to calculate optimum policies
 - basic: value iteration and policy iteration
 - improved: modified policy iteration, asynchronous policy iteration
- Further issues
 - large state spaces use state space approximation
 - partial observability (POMDPs) need to consider information gathering; can be mapped to MDPs over continuous belief space

Literatura I

- [Ang86] Dana Angluin. Learning regular sets from queries and counter-examples. Technical Report YALEU/DCS/TR-464, Yale University, Department of Computer Science, March 1986.
- [Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87–106, 1987.
- [BP66] Leonard E. Baum and Ted Petrie. Statistical inference for probabilistic functions of finite state markov chains. The Annals of Mathematical Statistics, 37(6):1554–1563, 1966.
- [Hon13] Marek Honzírek. Aktivní učení a automaty. Master's thesis, Katedra matematiky, Fakulta jaderná a fyzikálně inženýrská. ČVUT. Praha. 2013.
- [Jak10] Michal Jakob. A3M33UI decision theory essentials, lecture notes. http://cw.felk.cvut.cz/doku.php/courses/a3m33ui/prednasky. February 2010.
- [PM10] David Poole and Alan Mackworth. Artificial intelligence, foundations of computational agents. http://artint.info/slides/slides.html, 2010.
- [RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence, A Modern Approach. Pre, third edition, 2010.
- [Sha08] Muzammil Muhammad Shahbaz. Reverse Engineering Enhanced State Models of Black Box Software Components to support Integration Testing. PhD thesis, Institut Polytechnique de Grenoble, 2008.

