
FSM Learning

Radek Mǎŕık

Czech Technical University
Faculty of Electrical Engineering

Department of Telecommunication Engineering
Prague CZ

December 19, 2017

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 1 / 43

Outline

1 FSM Sequences
Overview
Distinguishing Sequence
State Verifying Sequence
State Characterizing Set
Homing Sequence
Synchronizing Sequence

2 FSM Learning
Angluin’s Algorithm

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 2 / 43

FSM Sequences Overview

State Identification vs. State Verification

A state identification sequence determines the initial state from
which the sequence was applied if a representation of FSM is known.

It also finds out the final state.
Identification is usually based on a response of the machine,
but some sequences are able to determine the final state regardless of
the output.

A state verification sequence verifies that the FSM was in a
particular initial state which was not known before the experiment is
performed.

This can be achieved only by observing output and a representation of
FSM must be known.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 4 / 43

FSM Sequences Overview

FSM Sequences - Overview [Sou14]

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 5 / 43

FSM Sequences Distinguishing Sequence

Distinguishing Sequence [Sou14]

Definition 1.1

A distinguishing sequence (DS) is an input sequence which distinguishes
any two states according to the observed output.

The application of a DS in each state provides no two identical
output sequences.

The final state is known after applying the DS.

A distinguishing sequence is one of state identification sequences and
also one of state verification sequences.

If DS is applied in an unknown state, this state and also the final
state is easily identified by the output.

If the FSM is assumed to be in a certain state, the response after
applying DS verifies whether the assumption was correct.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 7 / 43

FSM Sequences Distinguishing Sequence

Preset Distinguishing Sequence [Sou14]

Definition 1.2

A preset distinguishing sequence (PDS) (CZ p̌rednastavená rozlǐsuj́ıćı
sekvence) for a machine is an input sequence x such that the output
sequence produced by the machine in response to x is different for each
initial state, i.e., λ∗(si, x) 6= λ∗(sj , x) for every pair of states si, sj , i 6= j.

The distinguishing sequences can be determined from a distinguishing
tree.

A distinguishing tree is a successor tree from which all minimal
length distinguishing sequences can be derived.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 8 / 43

FSM Sequences Distinguishing Sequence

PDS algorithm I [DH94, Sou14]

1 The distinguishing tree has an root node labeled with the set Q of all
states of the machine.

2 For each input a ∈ Σ, construct a branch from Q to a successor node
which represents the set of all next states if the present state is in Q
and the input a is applied. Group these states according to the
outputs d ∈ Γ associated with the transition to the states.
Each such group corresponds to the possible next states caused by
transitions from Q with input a and output d.

3 Determine terminal nodes of the tree according to the following rules:

a A node in which a state appears more than once in a group is a terminal
node.

b A node which is identical to a node at an earlier level is a terminal node.
Note that only groups that are formed by more than a single state should
be compared.

c A node in which each group consists of a just single state is a terminal
node.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 9 / 43

FSM Sequences Distinguishing Sequence

PDS algorithm II [DH94, Sou14]

4 If one or more nodes are terminal nodes defined by rule c) of step 3,
the sequence of inputs corresponding to a path from the root node to
such a terminal node is a distinguishing sequence for the machine. If
all nodes terminate by rule a) or rule b), then the machine has no
distinguishing sequence. If there are some nonterminal nodes in the
tree, go to step 5.

5 For each nonterminal node Qi and each input a ∈ Σ, construct a
branch from Qi to a successor node representing the next states of Qi

for input a. Group these states according to outputs, as in step 2, but
do not group together any states generated by different subgroups of
Qi. Go to step 3.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 10 / 43

FSM Sequences Distinguishing Sequence

PDS Example [Sou14]

a b

A C / 1 D / 1

B A / 1 C / 1

C D / 2 B / 1

D C / 2 A / 2

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 11 / 43

FSM Sequences Distinguishing Sequence

PDS Example Sequences [Sou14]

a b

A C / 1 D / 1

B A / 1 C / 1

C D / 2 B / 1

D C / 2 A / 2

aab aba abb bab bba

A 122 111 111 121 121

B 111 112 112 122 111

C 221 221 221 111 112

D 222 211 211 211 212

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 12 / 43

FSM Sequences State Verifying Sequence

State Verifying Sequence [LY94, Sou14]

A state verifying sequence (SVS) is also called simple I/O
sequence [Hsi71] or Unique Input Output sequence [LY94].

Definition 1.3

A state verifying sequence of a state s ∈ S is an input sequence
x ∈ Σ∗, such that the output sequence produced by the machine in
response to x from any state other than s is different than that from s,
i.e., λ∗(si, x) 6= λ∗(s, x) for any si 6= s.

When FSM could be in any particular state, just the SVS of this state
is applied. Then the observed output sequence determines whether
FSM was in the expected state or not.

A union of state verifying sequences of all states in FSM is called
states verifying set (SVSet) of FSM.

A state does not have to have SVS and so SVSet is not defined.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 14 / 43

FSM Sequences State Verifying Sequence

SVS Algorithm I [Sou14]

1 The state distinguishing tree of state s ∈ S has an initial node labeled
with the set Q of all states of the machine and state s ∈ Q is
highlighted. For Moore machines the set Q contains only states with
the same output symbol on ε as state s has.

2 For each input a ∈ Σ, construct a branch from Q to a successor node
which represents the set of all next states if the state is in Q and the
input a is applied and the output is equal to the output of transition
from the fixed state s ∈ Q. In each successor node highlight the next
state of the fixed state s.

3 Determine terminal nodes of the tree according to the following rules.
Note that the rules are listed in order of their testing.

a A node in which the highlighted state s appears more than once in the
label is a terminal node.

b A node which is identical to a node at an earlier level is a terminal node.
Note that also highlighted states must be the same.

c A node with the fixed state s only is a terminal node.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 15 / 43

FSM Sequences State Verifying Sequence

SVS Algorithm II [Sou14]

4 If one or more nodes are terminal nodes defined by rule c) of step 3,
the sequence of inputs corresponding to a path from the initial node
to such a terminal node is a state verifying sequence for the fixed
state s of the initial node.
If all nodes terminate by rule a) or rule b), then the machine has no
state verifying sequence for the state s.
If there are some nonterminal nodes in the tree, go to step 5.

5 For each nonterminal node Qi and each input a ∈ Σ, construct a
branch from Qi to a successor node representing the next states of Qi

on input a.
Eliminate states with different outputs than the fixed state s ∈ Qi has
on input a.
Highlight a next state of s in each successor node, i.e. if s is fixed
then δ(s, a) is fixed.
Go to step 3.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 16 / 43

FSM Sequences State Verifying Sequence

SVS Example - Moore Machine [Sou14]

a b ε

A C E 1

B C A 1

C E B 1

D A B 1

E D D 2

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 17 / 43

FSM Sequences State Verifying Sequence

SVS Example Sequences [Sou14]

a b ε

A C E 1

B C A 1

C E B 1

D A B 1

E D D 2

εb εbb εa εaa ε

A 12 121 11 112 1

B 11 112 11 112 1

C 11 111 12 121 1

D 11 111 11 111 1

E 21 211 21 211 2

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 18 / 43

FSM Sequences State Characterizing Set

State Characterizing Set [Sou14]

For all states different from s there exists an input sequence xk, such
that the output sequences produced by the machine in response to xk
is different, i.e., ∀si 6= s ∃xk ∈ Λs : λ∗(si, xk) 6= λ∗(s, xk).

Definition 1.4

A state characterizing set Λs of a state s ∈ S is a set of input sequences
xk ∈ Σ∗, such that the set of output sequences produced by the machine
in response to all xk from any state other than s is different than that
from s, i.e., {λ∗(si, xk) |xk ∈ Λs} 6= {λ∗(s, xk) |xk ∈ Λs} for any si 6= s.

Each state of a reduced FSM has a state characterizing set (SCSet).

Minimization of number of sequences in a state characterizing set can
be proved to be NP-hard[HMU06] because Set cover problem which is
NP-complete can be reduced polynomially to the minimization of
sequence number problem.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 20 / 43

FSM Sequences State Characterizing Set

Characterization Set [Sou14]

A characterizing set W is a set of input sequences xk ∈ Σ∗, such
that for each pair of states (si, sj), si 6= sj , there is sequence xk ∈W
that distinguishes this pair, i.e., λ∗(si, xk) 6= λ∗(sj , xk).

W is also known as characterization set [Cho78].

The characterizing set (CSet) can be obtained as union of SCSets of
all states

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 21 / 43

FSM Sequences State Characterizing Set

SCSet Algorithm [Sou14]

1 For each pair of states (si, sj) ∈ S × S apply each input a ∈ Σ. If on
some a states si and sj produce different output, store this input a as
the shortest distinguishing sequence for pair (si, sj). For Moore
machines distinguish pairs of states first by the empty string ε.

2 For each pair (si, sj) distinguished by the input sequence w in the
previous step try to find an undistinguished pair (sk, sl) and an input
a such that the pair of the next states (δ(sk, a), δ(sl, a)) = (si, sj). If
there are such pair and input, store a · w as a distinguishing sequence
for the pair(sk, sl)

3 If some pair of different states is undistinguished, go to step 2.
Otherwise create a characterizing set as a set of all distinguishing
sequences stored in the previous steps. A state characterizing set of
state s is a set of all sequences distinguished pairs (s, sk), where
sk 6= s, i.e., {wk ∈ Σ∗ |wk distinguishes (s, sk) ∈ S × S, s 6= sk}.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 22 / 43

FSM Sequences State Characterizing Set

SCSet Example - Mealy Machine [Sou14]

a b

A C / 1 D / 1

B C / 1 C / 1

C B / 2 D / 1

D A / 2 B / 1

A B C D SCSet

A – bba a a {a, bba}
B bba – a a {a, bba}
C a a – ba {a, ba}
D a a ba – {a, ba}

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 23 / 43

FSM Sequences Homing Sequence

Homing Sequence [DH94, Sou14]

A homing sequence (HS) guides FSM to some specific states.

Definition 1.5

An input sequence x is said to be a homing sequence if the final state of
the machine can be determined uniquely from the machine’s response to
x, regardless of the initial state. These final states of the machine are
determined by observing the output sequence produced by applying a
homing sequence to the machine.

A homing sequence exists for all reduced FSM.

If the current state of FSM is unknown, HS is applied and according
to the output sequence a final state is determined.

An adaptive form of sequence can rapidly reduce the length of
homing sequence in some cases.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 25 / 43

FSM Sequences Homing Sequence

HS algorithm [DH94, Sou14]

1 The homing tree has an root node labeled with the set Q of all states of
the machine.

2 For each input a ∈ Σ, construct a branch from Q to a successor node
which represents the set of all next states, if the present state is in Q and
the input a is applied. Group these nodes according to outputs associated
with the transitions to the states. Within any group, no state need be
repeated.

3 Determine terminal nodes in the tree according to the following rules:
a A node which is identical to a node at an earlier level is a terminal node.
b A node in which each group is a single state is a terminal node.

4 If one or more nodes are terminal nodes by rule b), a sequence of inputs
from the root node to such a terminal node is a homing sequence. Note
that all nodes cannot be terminal by rule a) since a homing sequence
always exists. If there are some nonterminal nodes in the tree, go to step
5.

5 For each nonterminal node Qi and each input a, construct a branch from
Qi to a successor node, representing the next state of Qi for input a,
grouping them by outputs and not grouping together states that are
generated by different subgroups of Qi. Go to step 3.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 26 / 43

FSM Sequences Homing Sequence

HS Example - Mealy Machine [Sou14]

a b

A B / 1 D / 1

B A / 1 B / 1

C D / 2 A / 1

D D / 2 C / 1

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 27 / 43

FSM Sequences Homing Sequence

HS Example Sequences [Sou14]

a b

A B / 1 D / 1

B A / 1 B / 1

C D / 2 A / 1

D D / 2 C / 1

initial response final response final
state to aba state to abba state

A 111 A 1111 A

B 112 D 1112 D

C 212 D 2111 B

D 212 D 2111 B

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 28 / 43

FSM Sequences Synchronizing Sequence

Synchronizing Sequence [DH94, Sou14]

Some FSM can be synchronized to a particular state which means
that FSM is in this state after applying a specific input sequence.

The input sequence is called a synchronizing sequence (SS).

Definition 1.6

A synchronizing sequence is an input sequence which takes the machine
to a unique final state independent of its initial state.

This sequence has not an adaptive form because the decision is made
regardless of the output.

It is guaranteed that SS takes FSM into one state unlike HS which
can take machine into more than one final state.

SS has always at least the same length as HS

FSM may not even have an SS.

When output of FSM cannot be observed but a representation of
FSM is known SS still can be used to determine the current state.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 30 / 43

FSM Sequences Synchronizing Sequence

SS algorithm I [DH94, Sou14]

The synchronizing sequences can be found from a synchronizing tree
which is a successor tree.

The synchronizing tree is similar to the homing tree except that the
states represented by a node are not grouped according to outputs
since the final state must be determined independently of the output.

The following steps are followed to build a synchronizing tree and
derive all minimal length synchronizing sequences.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 31 / 43

FSM Sequences Synchronizing Sequence

SS algorithm II [DH94, Sou14]

1 The synchronizing tree has an root node labeled with the set Q of all
machine states.

2 For each input a ∈ Σ, construct a branch from Q to a successor node
which represents the set of all next states, if the current state is in Q and
the input a is applied. Group these nodes disregarding the outputs
associated with the transition to the states. Within the group, no state
need to be repeated.

3 Terminal nodes in the tree are determined according to the following
rules:

a A node which is identical to a node at an earlier level is a terminal node.
b A node in which the group is a single state is a terminal node.

4 If one or more nodes are terminal nodes by rule b), the sequence of inputs
from the root node to such a terminal node is a synchronizing sequence.
If all nodes are terminated by rule a), the machine has no synchronizing
sequence. If there are some nonterminal nodes in the tree, go to step 5.

5 For each nonterminal node Qi and each input a, construct a branch from
Qi to a successor node, representing the next states of Qi for input a. Go
to step 3.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 32 / 43

FSM Sequences Synchronizing Sequence

SS Example - Moore Machine [Sou14]

a b ε

A B C 1

B A D 1

C B A 2

D C A 2

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 33 / 43

FSM Sequences Synchronizing Sequence

SS Example Sequences [Sou14]

a b ε

A B C 1

B A D 1

C B A 2

D C A 2

initial response final response final
state to bba state to aabb state

A 211 B 1121 A

B 211 B 1121 A

C 121 B 1121 A

D 121 B 2121 A

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 34 / 43

FSM Learning Angluin’s Algorithm

Aktivńı učeńı [Hon13]

Pasivńı učeńı - množina X je dána a nemůžeme ji jakkoliv upravovat,

Aktivńı učeńı - množinu X si můžeme zvolit a v pr̊uběhu procesu
učeńı dále upravovat.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 36 / 43

FSM Learning Angluin’s Algorithm

Aktivńı učeńı s učitelem [Hon13]

Teacher Learner

Environment

Architektura učeńı s minimálńım adekvátńım učitelem.

LearnerTeacherEnvironment

Architektura s degradovaným učitelem pracuj́ıćım jako rozhrańı.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 37 / 43

FSM Learning Angluin’s Algorithm

Tabulka pozorováńı [Ang86, Sha08, Hon13]

Definition 2.1

Nechť E = (A, accept) je akceptačńı prosťred́ı.
Tabulkou pozorováńı prosťred́ı E nazýváme uspǒrádanou trojici
OT = (S,E,T), kde

S ⊆ A∗, S 6= ∅, S konečná, S je uzav̌rená na prefixy,

E ⊆ A∗, E 6= ∅, E konečná, E je uzav̌rená na sufixy,

T je funkce (S ∪ S ·A)× E → {0, 1}.

Množinu S nazýváme vstupńı množinou.

E rozlǐsovaćı množinou.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 38 / 43

FSM Learning Angluin’s Algorithm

Počátečńı tabulku pozorováńı [Hon13]

V L∗ algoritmu nejprve inicializujeme počátečńı tabulku pozorováńı
OT = (S,E,T) tak, že S = {ε}, E = {ε}.
Dále vytvǒŕıme frontu otázek p̌ŕıslušnosti, kterou tvǒŕı všechny
dvojice s · e, kde s ∈ S ∪ S ·A a e ∈ E.

Pomoćı učitele dostane odpověď z množiny {0, 1}, zda-li s · e paťŕı do
rozeznávaného jazyka a tuto hodnotu ulož́ıme na ḿısto T(s, e) v
tabulce pozorováńı.

Odlǐsné řádky v sekci S tabulky definuj́ı stavy možného automatu.

E
ε

S ε 1

S ·A a 0
b 0

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 39 / 43

FSM Learning Angluin’s Algorithm

Tabulku pozorováńı - uzav̌renost, konzistence [Hon13]

Definition 2.2

Ř́ıkáme, že tabulka pozorováńı OT = (S,E,T) je uzav̌rena, pokud

(∀t ∈ S ·A)(∃s ∈ S)(s
E∼ t).

Dále ř́ıkáme, že tabulka je konzistentńı, pokud

(∀s, t ∈ S, s E∼ t) =⇒ (∀a ∈ A)(s · a E∼ t · a).

Kontrolu uzav̌renosti a konzistence provád́ıme po vyprázdněńı fronty
otázek p̌ŕıslušnosti.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 40 / 43

FSM Learning Angluin’s Algorithm

Tabulku pozorováńı - modifikace [Hon13]

Pokud neńı OT = (S,E,T) uzav̌rená, pak

1 najdeme t ∈ S ·A, že s 6E∼ t pro všechna s ∈ S.
2 toto t pak p̌ridáme do množiny S a frontu otázek p̌ŕıslušnosti rozš́ı̌ŕıme

o t · a · e pro všechna a ∈ A a e ∈ E.

Jestliže neńı OT konzistentńı,

1 najedeme s, t ∈ S, e ∈ E a a ∈ A, že s
E∼ t, ale T (s · a, e) 6= T (t · a, e).

2 do rozlǐsovaćı množiny E p̌ridáme slovo a · e
3 frontu otázek p̌ŕıslušnosti rozš́ı̌ŕıme o s′ · e pro všechna s′ ∈ S ∪ S ·A.
4 Je žrejmé, že po tomto zásahu již nebude v nové tabulce pozorováńı

platit s
E∼ t.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 41 / 43

FSM Learning Angluin’s Algorithm

L∗ algoritmus [Ang86, Sha08, Hon13]

1 Inicializace počátečńı tabulky pozorováńı OT = (S,E,T).

2 Pomoćı fronty otázek p̌ŕıslušnosti vyplńıme celou tabulku pozorováńı.
3 Kontrola uzav̌renosti a konzistence tabulky.

1 Pokud neńı OT uzav̌rená, rozš́ı̌ŕıme množinu S o t ∈ S ·A, že s 6E∼ t
pro všechna s ∈ S. Rozš́ı̌ŕıme frontu otázek p̌ŕıslušnosti a pokračujeme
bodem 2.

2 Pokud neńı OT konzistentńı, rozš́ı̌ŕıme množinu E o slovo a · e, e ∈ E
a a ∈ A tak, že existuj́ı s, t ∈ S, že s

E∼ t, ale T(s · a, e) 6= T(t · a, e).
Rozš́ı̌ŕıme frontu otázek p̌ŕıslušnosti a pokračujeme bodem 2.

4 Vytvǒŕıme návrh A prosťred́ı a zeptáme se učitele na jeho správnost.

5 Pokud učitel vrát́ı protip̌ŕıklad c ∈ A+, smažeme návrh A, p̌ridáme do
množiny S všechny prvky množiny pref(c), rozš́ı̌ŕıme frontu otázek
p̌ŕıslušnosti a pokračujeme bodem 2.

6 Návrh A p̌rij́ımáme za automat realizuj́ıćı prosťred́ı E .

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 42 / 43

FSM Learning Angluin’s Algorithm

Literatura I

[Ang86] Dana Angluin. Learning regular sets from queries and counter-examples. Technical Report YALEU/DCS/TR-464,
Yale University, Department of Computer Science, March 1986.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines. Software Engineering, IEEE Transactions
on, (3):178–187, 1978. Test: P.Z, W=characterization set Transfer and operation error, extra state Comparison:
branch, switch and boundary-interior covers.

[DH94] RG Deshmukh and GN Hawat. An algorithm to determine shortest length distinguishing, homing, and synchronizing
sequences for sequential machines. In Southcon/94. Conference Record, pages 496–501. IEEE, 1994. Def and
algorithms: DS, HS, SS - as successor tree.

[HMU06] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to Automata Theory, Languages, and
Computation. Prentice Hall, 2006. Def: DFA, (eps-)NFA, RegEx, RegLang, CFL, Pushdown Automata, TM
Undecidability, Intractable, P, (Co-)NP, NPC, (N)PSpace(-Complete), RP, ZPP.

[Hon13] Marek Honźırek. Aktivńı učeńı a automaty. Master’s thesis, Katedra matematiky, Fakulta jaderná a fyzikálně
inženýrská, ČVUT, Praha, 2013.

[Hsi71] E. P. Hsieh. Checking experiments ror sequential machines. IEEE Transactions on Computers, C-20(10):1152–1166,
Oct 1971.

[LY94] David Lee and Mihalis Yannakakis. Testing finite-state machines: State identification and verification. Computers,
IEEE Transactions on, 43(3):306–320, 1994. Def: state identification and verification Test whether FSM has a PDS
is PSPACE-Complete There are FSM with exponential-long PDS as the shortest one Polynomial existence and
constructing algorithm for ADS (based on Hopcroft minimization).

[Sha08] Muzammil Muhammad Shahbaz. Reverse Engineering Enhanced State Models of Black Box Software Components to
support Integration Testing. PhD thesis, Institut Polytechnique de Grenoble, 2008.

[Sou14] Michal Soucha. Sequences of finite-state machines, BSc. thesis. Master’s thesis, Department of Cybernetics, Faculty
of Electrical Engineering, CTU, Prague, 2014. Department of Cybernetics, Faculty of Electrical Engineering, CTU,
Prague.

Radek Mǎŕık (radek.marik@fel.cvut.cz) FSM Learning December 19, 2017 43 / 43

	FSM Sequences
	Overview
	Distinguishing Sequence
	State Verifying Sequence
	State Characterizing Set
	Homing Sequence
	Synchronizing Sequence

	FSM Learning
	Angluin's Algorithm

