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Czech Technical University
Faculty of Electrical Engineering

Department of Telecommunication Engineering
Prague CZ

October 31, 2017
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Community Concept Motivation

Network of Ancient Egypt Officials [Dul08]

01 HAty-a (n it.f)
02 smr waty (n it.f)
03 iry-pat
04 imy-rA kAt nb(t) nt ncwt
05 Htmw bity (n it.f)
06 Xry-Hb (n it.f)
07 Xry-Hb Hry-tp (n it.f)
08 imy-rA zS(w) a-ncwt
09 imy-rA prwy-HD
10 Xry-tp ncwt (pr-aA)
11 imy-rA Snwty
12 mniw Nxn
13 Hry-sSTA n pr-dwAt
14 zS mDAt nTr (n it.f)
15 imy-rA izwy Xkr ncwt
16 mdw rxyt
17 Hry-tp Nxb (n it.f)
18 sm
19 iwn knmwt
20 wr 5 (m) pr-+Hwty
21 imy-rA Hwt-wrt 6
22 aA dwAw
23 Hry-sStA n wDt-mdw nbt (nt ncwt)
24 xrp Sndyt nbt
25 Hry-sStA (n it.f)
26 imA-a
27 imy-iz
28 imy-rA wabty
29 xrp iAt nbt nTrt
30 zA ncwt (n Xt.f) smsw
32 imy-rA aw
33 r p nb
33 zA ncwt n Xt.f
34 imy-rA prwy nwb
35 aD-mr n zAb
36 Hry-sStA ncwt m zwt.f (nbt)
37 xrp aH (n it.f)
38 zA ncwt
39 imy-rA gs-pr
40 smsw snwt (n it.f)
41 imy-iz Nxn
42 wt Inpw
43 Hts Inpw
44 Hm-nTr MAat
45 xrp wsxt
46 smA Mnw
47 sHD Hm-nTr +d-swt-Ttj
48 imy-rA Hwt wrt
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3.e 4.e-4.l end 4–5.e 5.m 5.l 6.e 6.l end OK
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Community Concept Motivation

Goal [DM16]
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Community Concept Community

A Network with Communities - Example [BAV13]
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Community Concept Community

Community Concept [New06, Weh13, FH16]

To reduce complexity to understand the intermediate structure.

Communities, also called clusters or modules, are groups of vertices
which probably share common properties and/or play similar roles
within the graph.
Communities are dense subgraphs of a network.

There must be more edges “inside” the community than edges linking
vertices of the community with the rest of the graph.

Subgroup composition of the network
Common local subgroup definitions:

Mutuality (cliques),
Reachability (n-cliques),
Tie frequency (k-cores),
Relative tie frequency (lambda sets, communities)

Global definitions
A graph has community structure if it is different from a random graph.
A null model is a graph which matches the original in some of its
structural features, but which is otherwise a random graph.
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Community Detection Overview

Community Structure Extraction [BGLL08]
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Community Detection Overview

Overview of Methods

Basic Methods of Data Structure Analysis

Cluster analysis

Bi-clustering

Matrix Factorization

Community Detection (graphs/networks)

Community Detection

Nonoverlapping community detection

Overlapping community detection

Community detection in bipartite graphs

Community detection based on stochastic block models
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Community Detection Nonoverlapping Communities

Nonoverlapping Communities [New04]

Searching for dense connected subgraphs
there are less edges between subgraphs than inside them

Fundamental approaches
Search for partitions
Search for hierarchy
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Community Detection Nonoverlapping Communities

Nonoverlapping Communities - Graph Partitioning

einside − ebetween

einside

etotal
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Community Detection Nonoverlapping Communities

Kernighan-Lin Algorithm: Goal [KL70]

The goal to partition a given graph into subgraphs of known orders so
that there is the minimum of edges between them.
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Community Detection Nonoverlapping Communities

Kernighan-Lin Algorithm: Node Move Gain [KL70]

einside − ebetween

Initial partitions: A = {0, 2, 3, 6, 8}, B = {1, 4, 5, 7, 9}
Node move gain: Di = |e(i)between| − |e(i)inside|

vertex 0 1 2 3 4 5 6 7 8 9

Di 1 0 0 -1 -1 -1 1 -1 1 -1
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Community Detection Nonoverlapping Communities

Kernighan-Lin Algorithm: Node Swap Gain [KL70]

Partitions: A = {0, 2, 3, 6, 8}, B = {1, 4, 5, 7, 9}
Node move gain: Di = e(i)between − e(i)inside]

vertex 0 1 2 3 4 5 6 7 8 9

Di 1 0 0 -1 -1 -1 1 -1 1 -1

2 neighboring nodes swap gain

gij = (Di −Aij) + (Dj −Aij) = Di +Dj − 2Aij , i ∈ A, j ∈ B

gij =

i
— j 1 4 5 7 9

0 -1 0 0 0 0
2 -2 -1 -1 -1 -1
3 -1 -2 -2 -2 -2

6 1O1 0 -2 0 0
8 1 0 0 -2 0

If we swap 6 and 1 then we get
the maximum gain +1.
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Community Detection Nonoverlapping Communities

Kernighan-Lin Algorithm: Update

The tuple 6 and 1 is eliminated in the rest of steps:

A = {0, 2, 3, 6/, 8}, B = {1/, 4, 5, 7, 9}

and Di is updated:

D(1)
a = D(0)

a + 2Aa,ai − 2Aa,bj , a ∈ A− {ai}

D
(1)
b = D

(0)
b + 2Ab,bj − 2Ab,ai , b ∈ B − {bj}

vertex 0 1 2 3 4 5 6 7 8 9

Di -1 0 -2 -1 1 -1 1 -1 1 -1

Possible gains are updated:

gij =

i — j 4 5 7 9

0 0 -2 -2 -2
2 -1 -3 -3 -3
3 0 -2 -2 -2

8 2O2 0 -2 0

The next maximum gain is 2
if 8 and 4 are swapped.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Community Detection October 31, 2017 18 / 48



Community Detection Nonoverlapping Communities

Kernighan-Lin Algorithm: Following Steps

Similarly, possible gains are calculated for all remaining pairs.

k A B gmax (a, b)
∑k

0 gmax,i
0 {0, 2, 3, 6, 8} {1, 4, 5, 7, 9} 1 (6,1) 1

1 {0, 2, 3, 6/, 8} {1/, 4, 5, 7, 9} 2 (8,4) 3O3
2 {0, 2, 3, 6/, 8/} {1/, 4/, 5, 7, 9} -2 (0,5) 1
3 {0/, 2, 3, 6/, 8/} {1/, 4/, 5/, 7, 9} -2 (3,7) -1
4 {0/, 2, 3/, 6/, 8/} {1/, 4/, 5/, 7/, 9} 1 (2,9) 1

We choose so many steps as reach the maximum total gain
argmaxk

∑k
0 gmax,i.

In this case just two steps are performed: we swap {6, 1} and {8, 4}.
The new partition is obtained A = {0, 1, 2, 3, 4}, B = {8, 9, 5, 6, 7}
The algorithm ends with the next iteration.
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Community Detection Nonoverlapping Communities

Kernighan-Lin Algorithm: The Result

The new partition A = {0, 1, 2, 3, 4}, B = {8, 9, 5, 6, 7}
Drawbacks:

The number of partitions must be given in advance.
The size of partitions must be given in advance.
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Community Detection Nonoverlapping Communities

Spectral Bisection: Input Data [New10]

A =



0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0



Spectral partitioning method of Fiedler

It makes use of the matrix properties of
the graph Laplacian

The graph bisection . . . the problem of
dividient a graph into two parts of
specified sizes N1 and N2.

N vertices, M edges

The cut size for the division

i.e. the number of edges running
between the two groups

R =
1

2

∑
i, j in

different
groups

Aij

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Community Detection October 31, 2017 21 / 48



Community Detection Nonoverlapping Communities

Spectral Bisection: Graph Laplacian

L = D−A

L =



1 −1 0 0 0 0 0 0 0 0
−1 4 −1 0 −1 −1 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0
0 −1 0 0 0 3 −1 −1 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 3 −1 −1
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0 1
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Community Detection Nonoverlapping Communities

Spectral Bisection [New10]

A division vector s as a set of quantities si for each vertex i.

si =

{
+1 if vertex i belongs to group 1,
−1 if vertex i belongs to group 2

Then

1
2(1− sisj) =

{
1 if i and j belong to different groups
0 if i and j belong to the same group

Since
∑

ij Aij =
∑

i ki =
∑

i kis
2
i =

∑
ij kiδijsisj

we can find that (considering graph Laplacian L)

R = 1
4

∑
ij

Aij(1− sisj) = 1
4

∑
ij

(Aij −Aijsisj) (1)

= 1
4

∑
ij

(kiδijsisj −Aijsisj) = 1
4

∑
ij

(kiδij −Aij)sisj (2)

= 1
4

∑
ij

Lijsisj = 1
4s
TLs (3)
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Community Detection Nonoverlapping Communities

Spectral Bisection - Minimization Problem [New10]

The goal is to find the vector s that minimizes the cut size R for
given L.
Using the relaxation method . . . an approximate solution of vector
optimization problem.

Two constraints
∑

i s
2
i = N and

∑
i si = N1 −N2

The solution

Ls = λs + µ1 . . .1T×

Since L · 1 = 0 = 1T · L, it is µ = −N1−N2
N λ

We define a new vector x = s + µ
λ1 = s− N1−N2

N 1

Then x is the eigenvector of L with eigenvalue λ

Lx = L(s + µ
λ1) = Ls = λs + µ1 = λx

NOT 1:

1Tx = 1T s− µ
λ1

T1 = (N1 −N2)−
N1 −N2

N
N = 0
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Community Detection Nonoverlapping Communities

Spectral Bisection - Eigenvector Choice [New10]

Since

xTx = (s + µ
λ1)T (s + µ

λ1) = sT s + µ
λ (sT1 + 1T s) + µ2

λ2
1T1 (4)

= N − 2
N1 −N2

N
(N1 −N2) +

(N1 −N2)
2

N2
N = 4

N1N2

N
(5)

Searching for the smallest value of the cut size R

R = 1
4s
TLs = 1

4x
TLx = 1

4λx
Tx =

N1N2

N
λ

=⇒ we search for the second smallest eigenvalue λ2
λ2 . . . the Fiedler value, the corresponding eigenvector, the Fiedler
vector [Fie73, Fie75]

λ1 = 0 puts all vertices into one group.

The most positive values si = xi + (N1 −N2)/N are also the most
positive values of xi.

Compute eigenvector v2 and assign N1 vertices according to the
N1 most/least positive elements of v2 into group 1.
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Community Detection Nonoverlapping Communities

Spectral Bisection

Eigenvectors:



1
1
1
1
1
1
1
1
1
1


,



0.2393
0.1911
0.3500
0.4384
0.2393
−0.1027
−0.1287
−0.3500
−0.4384
−0.4384


=⇒

A = {0, 1, 2, 3, 4}
B = {5, 6, 7, 8, 9}

Eigenvalues: λ1 = 0, λ2 = 0.2015
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Community Detection Nonoverlapping Communities

Hierarchical clustering [New04]

Modularity

Q =
1

2M

∑
i,j

(
Aij − Pij

kikj
2M

)
δCiCj
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Community Detection Nonoverlapping Communities

Newman’s Modularity [New06, Weh13]

Modularity: function which measures the quality of a partition

Communities are dense subgraphs of a network.

Reduce complexity to understand the intermediate structure.

Subgroup composition of the network

Common subgroup definitions:

Mutuality (cliques),
Reachability (n-cliques),
tie frequency (k-cores),
relative tie frequency (lambda sets, communities)

”A good division of a network into communities is not merely one in
which there are few edges between communities; it is one in which
there are fewer than expected edges between communities”.

Modularity . . . is - up to a normalization constant - the number of
edges within communities c minus those for a null model:
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Modularity [New06]

Q =
1

2M

∑
i,j

(
Aij −

kikj
2M

)
δCiCj ,

where
Aij . . . a weight of the edge between vertices i and j

ki =
∑

j Aij . . . a (weighted) vertex degree i

M = 1
2

∑
i,j Aij . . . the total edge weight (the total number of edges)

kikj/2M . . . the expected weight (number) of edges between i and j
. . .null model

Ci . . . the attribute (community)of the vertex i
δuv . . . Kronecker delta

Q ∈ [−1, 1] is normalized

for edges with weights
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Newman Spectral Method - Modularity matrix [New06]

Q =
1

2M

∑
i,j

(
Aij −

kikj
2M

)
δCiCj ,

Definice 2.1 (Modularity matrix)

Bij = Aij −
kikj
2M

,

Property of Bij∑
j

Bij =
∑
j

Aij −
ki

2M

∑
j

kj = ki −
ki

2M
2M = 0

Just two communities:
a division vector s as a set of quantities si for each vertex i.

si =

{
+1 if vertex i belongs to group 1,
−1 if vertex i belongs to group 2

δCiCj = 1
2(sisj + 1) =

{
1 if i and j belong to the same group
0 if i and j belong to different groups
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Newman Spectral Method[New06]

Substituting

Q =
1

4

∑
ij

Bij(sisj + 1) =
1

4

∑
ij

Bijsisj =
1

4
sTBs

A solution found similarly as for the spectral partitioning
The constraint sT s =

∑
i s

2
i = N

The solution Bs = βs
The modularity Q = 1

4M βsT s = N
4M β

For maximum modularity we should choose s to be the eigenvector u1

corresponding to the largest eigenvalue of the modularity matrix.
The constraint si = ±1.

The best choice:
Select the u1 and maximize the product sTu1 =

∑
i si[u]i

si =

{
+1 if [u]i > 0
−1 if [u]i < 0
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Community Structure Extraction - Louvain Method [BGLL08]

Repeated step

1 modularity is optimized by allowing only local changes of communities

2 the communities found are aggregated in order to build a new
network of communities
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Louvain Algorithm [BGLL08, Bar16]

Q =
1

2M

∑
i,j

(
Aij −

kikj
2M

)
δCiCj

The first term rewritten as a sum over communities

1

2M

∑
i,j

AijδCiCj =

nc∑
c=1

1

2M

∑
i,j∈Cc

Aij =

nc∑
c=1

Mc

M

where Mc is the number edges within community Cc
The second term becomes

1

2M

∑
i,j

kikj
2M

δCiCj
=

nc∑
c=1

1

(2M)2

∑
i,j∈Cc

kikj =

nc∑
c=1

1

4M2

∑
i∈Cc

ki
∑
j∈Cc

kj =

nc∑
c=1

k2c
4M2

where kc =
∑

i∈Cc
ki is the total degree of the nodes in community Cc

Then

Q =

nc∑
c=1

[
Mc

M
− k2c

4M2

]
Modularity gain for the move of an isolated node i into a community
C

∆Q = [
∑

in

]

where∑
in . . . the sum of weights of the links inside C,
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Louvain Algorithm - Merging Two Communities [BGLL08]

Given two communities A and B with the total degrees kA and kB,
respectively, in these communities.

The number MA and MB of edges in communities A and B, resp.
The resulting (merged) community AB with the total degree kAB

kAB = kA + kB
The number of edges: MAB = MA +MB +mAB

where mAB is the number of direct links between the nodes of
communities A and B

The change in modularity after merging of A with B and
substitutions:

∆QAB =


QAB︷ ︸︸ ︷

MAB

M
−
k2AB
4M2

−


QA︷ ︸︸ ︷
MA

M
−

k2A
4M2

+

QB︷ ︸︸ ︷
MB

M
−

k2B
4M2


=
mAB

M
− kAkB

2M2

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Community Detection October 31, 2017 34 / 48



Community Detection Nonoverlapping Communities

Louvain Algorithm - Moving One Node [BGLL08]

∆QAB =
mAB

M
− kAkB

2M2

Merging a given isolated node i as the community B = {i} [BGLL08]:

∆QAi =
mAi

M
− kAki

2M2
=

=
MA

2M
+

2mAi

2M
−
(

(kA)2

(2M)2
+

2kAki
(2M)2

+
(ki)

2

(2M)2

)
−

−MA

2M
+

(kA)2

(2M)2
+

(ki)
2

(2M)2
=

=

[
MA + 2mAi

2M
−
(
kA + ki

2M

)2
]
−

[
MA

2M
−
(
kA
2M

)2

−
(
ki

2M

)2
]

If a single node i if removed from the community A then the change
in modularity is −∆QAi.
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Louvain Algorithm [BGLL08]

The Algorithm

1 A different community is assigned to each node of the network.

2 For each node i
a The neighbors j of i are considered
b The gain of modularity is evaluated for moving i from its community and

placing it into the community of j.
c The node i is placed into the community for which the gain is maximum,

but only if this gain is positive.
d Repeated for all nodes and
e Repeated until no further improvement can be achieved.

3 Build a new network whose nodes are the communities found during
the first phase

4 The process is iterated from Step (2)
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Louvain Algorithm [BGLL08]

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Community Detection October 31, 2017 37 / 48



Community Detection Nonoverlapping Communities

Belgian Mobile Phone Network - Louvain Method [BGLL08]

2.6 millions
customers

Language:
Dutch, English,
French, German,

6.3 millions links

Weights
. . . number of
call + sms

Red . . . French,

> 93%
segregated,

The center
. . . Brussels
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Louvain Algorithm - Resolution Limit [Bar16]

∆QAB =
mAB

M
− kAkB

2M2

If there is at least one link between the two communities
mAB ≥ 1

and if kAkB
2M < 1

then ∆QAB > 0
Therefore, if A and B are distinct communities linked with at least
one edge, then they are merged if they are small enough.
The resolution limit: assuming kA ≈ kB = k and if

k ≤
√

2M

then modularity increases by merging A and B.
An artifact of modularity maximization:

If kA and kB are under the threshold, the expected number of links
between them is smaller than one.
Proposed methods for resolution limit compensation.
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Overlapping Communities [YL12]
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Overlapping Communities

An attempt to explaining the links of the observed network, “causes”
of the graph creation.
affiliation. . . “community membership”
The probability that an edge between the nodes i and j is generated:

p(i, j) = 1−
∏

c∈Cij

(1− pc)

Cij . . . a set of communities that i and j share
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Affiliation Graph Model

Given

an observed graph: G(V,E),

model afilaćı: AGM(B(V,C,M),P = {pc|c ∈ C}).

C. . . a set of communities,

M . . . affiliation (it assigns nodes to communities)

Then the probability that the model AGM generates the graph G is

P (G|BP) =
∏

(i,j)∈E

p(i, j)
∏

(i,j)6∈E

(1− p(i, j))
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Summary

Community detection

Community detection method taxonomy

Kernighan-Lin algorithm

Spectral bisection

Hierarchical clustering

Community detection based on modularity

Overlapping communities

Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Community Detection October 31, 2017 44 / 48



Community Detection Overlapping Communities

Competencies

Describe the concept of community.

What is null model of a graph?

What types of community dection methods do you know?

Describe Kernighan-Lin algorithm.

Describe graph partitioning using the spectral bisection method.

What is modularity of graph proposed by Newman?

How can modularity be used for community detection?

Describe principles of the Louvain algorithms.

What is the resolution limi in community detection based on
modularity?

Describe principles of overlapping community detection.
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[Dul08] Veronika Duĺıková. Instituce vezirátu ve staré ř́ı̌si. Master’s thesis, Praha: Univerzita Karlova v Praze (nepublikovaná
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Radek Mǎŕık (radek.marik@fel.cvut.cz) Network Community Detection October 31, 2017 48 / 48


	Community Concept
	Motivation
	Community

	Community Detection
	Overview
	Nonoverlapping Communities
	Overlapping Communities


