
Modal logic

- informally, a logic which contains a modality, or several modalities
- a modal logic can be described with the notion of possible worlds
 - \circ M = (W, R, V)
 - W a set of possible worlds (states of the system)
 - R accessibility relation (w, w' \in R, if world w' is reachable (or it is considered possible) from state w), we can denote this as (w R w')
 - V evaluation of propositions in each world of W
 - basic modality: w⊨ □ p -> p is necessary true if and only if for every w', such that w R w', it holds that w'⊨p
 - this for example means that in every other world state that I consider possible, p must hold
 - o we can pose some restrictions on the properties of relation R
 - reflexive
 - symmetric
 - transitive
 - serial
 - euclidean
 - o different modal logics apply different restrictions on the relation R
 - e.g., in modal logic representing knowledge (relation R represents that agent i knows something - K_i) uses reflexive, symmetric, transitive and euclidean assumptions
 - temporal logics have serial restriction (there is always a next state)
 - o different restrictions cause different axioms to hold
 - e.g., if there is no symmetric restriction, an agent can believe that *p* is true, although it could be the case that *p* does not hold in the particular state -- i.e., the agents beliefs can be incorrect
- an example with cards
 - we have 3 players (A,B,C), 8 cards = 4xA, 4x8
 - each player receives two cards and places them on her forehead without looking at them
 - o each player is able to observe the cards of the other players
 - o players take turns and they try to determine what cards they have on their foreheads
 - we assume all players are rational, they do not take guesses, and they do not lie
 - o an example:
 - you are player C, you observe AA, 88; it is your turn (both players A and B have said that they did not know) -- can you determine what your cards are?
 - modeling the dynamic of this game using modal logic and possible worlds
 - the player C considers possible states (AA, 88, AA) (AA, 88, 88) (AA, 88, 8A)
 - without any other information the player C cannot determine what cards are on her forehead
 - when player A says that she does not know, player C can remove the state (AA, 88, 88) from the state of possible worlds if this would have been the case, the player A could have surely determined the cards on her forehead (she would have observed 88, 88 there is no other possibility than having AA), but A has said "I do not know", therefore this state is no longer possible.

- example with a robot -- Where is waldo?
 - we can use temporal logic to describe behavior/dynamics of an agent or a system, but also e.g., the goals
 - we need to specify the states, sensors (r_1 ... r_4 -> in which region the robot is, s_w -> whether the robot senses waldo)
 - \circ we can specify the goal as follows: \Box \Diamond (r_2 OR s_w) AND \Box \Diamond (r_4 OR s_w)
 - the robot has to look for Waldo repeatedly in regions 2 and 4 until it sees Waldo
 - □ op this means that p will hold infinitely often in temporal logics
 - we can use model checking tools to verify whether our robot based on some simple rules can actually accomplish the goal
 - alternatively, there are approaches that could generate behavior of agent/robot based on the specification of the environment and goals in (restricted variant of) temporal logic
- temporal logic

0

- o modalities refer to the possible worlds in the future
- example
 - consider a following transitions (we start at state S0)

- o write down the beginning of the (infinite long) runs of the system
- o which of the following formulae hold in state S0?
 - EG(p & q)
 - AG(p & q)
 - AX p
 - AG (p v q)
 - EX p
 - EF (p v !q)
 - AF (p v !q)
 - EFG p
 - AGF p