Computational Social Choice

- summary of the voting protocols
 - scoring rules (plurality, Borda)
 - single transferable vote (STV)
 - pairwise elimination
 - plurality with runoff
 - Condorcet winner
- Exercise
 - assume following preferences:
 - 3 agents: a > b > c
 - 2 agents: b > c > a
 - 2 agents: c > a > b
 - Which of the candidates is selected if we use plurality voting?
 - Borda?
 - Pairwise elimination with ordering
 - (a,b,c)?
 - (b,c,a)?
 - (c,a,b)?
 - Assume that we want to include a fourth candidate, "d", into the preferences profiles. Can we do it in such a way "c" will be the winner under Borda voting rule?
- Definition of Condorcet loser
 - This candidate loses in pairwise comparison with every other candidate.
 - Let's assume we are using plurality voting rule. Can the winner under plurality be the Condorcet loser?
 - If so, find an example of such a situation. If not, prove it.
 - What happens under Borda voting rule?
- Manipulation
 - strategic behavior in the voting setting
 - Classical problem -- If one agent knows the full preferences of other agents, how hard it is to calculate an insincere vote that can improve agent's preferences.
 - Computational complexity is beneficial in this case.
 - P for simple voting rules and one manipulator (e.g., Borda)
 - NP for more complex rules (e.g., STV)
- Statistical Social Choice
 - we can use the social choice methods for aggregating opinions of other agents/people in order to find the "ground truth"
 - maximal-likelihood estimation principle -- we are seeking for a model (truth), for which it is the highest probability that the evidence (gathered votes) is as observed.
 - the simple voting rules (e.g., scoring rules) are correct estimators -- by aggregating the votes in this way we are guaranteed to find a correct model