Solving Normal-form Games

October 21, 2014

<ロ><目><合><注><注><注><注><注><注><注><注><</td>1/9

- Several examples of normal-form games
- Computation of pure strategy Nash equilibrium
- Social welfare
- Pareto optimality
- Domination
 - Prisonner's dilemma from lecture

- Computation of mixed strategy Nash equilibrium
- Minimax, Maximin
- Properties of Nash equilibria in various classes of games
- Computation of Nash equilibrium in practice

- Computation of mixed strategy Nash equilibrium
- Minimax, Maximin
- Properties of Nash equilibria in various classes of games
- Computation of Nash equilibrium in practice

- A pure strategy s_i in normal-form games represents the choice of specific action a ∈ A_i for player i
- A mixed strategy σ_i is a strategy distribution over pure strategies
- Strategy profile *P* is a set of pure/mixed strategies, one for every player
- Overloading of utility function $u(s_i, s_{-i}), u(\sigma_i, \sigma_{-i}), u(P)$

Nash equilibrium

• A strategy σ_i^* is the best response to strategies σ_{-i} , written as $\sigma_i^* \in BR(\sigma_{-i})$ iff

$$\forall \sigma_i \in \Sigma_i : u_i(\sigma_i^*, \sigma_{-i}) \ge u_i(\sigma_i, \sigma_{-i})$$
(1)

- Nash equilibrium
 - Strategy profile $P = \{\sigma_1, ..., \sigma_n\}$ is a Nash equilibrium iff

$$\forall i \in N : \sigma_i \in BR(\sigma_{-i}) \tag{2}$$

- Stable against deviations of players as every player plays his best response to the strategies of the rest
- Assumes self-interested rational players
- Every finite game has a non-empty set of Nash equilibria

- Computation of mixed strategy Nash equilibrium
- Minimax, Maximin
- Properties of Nash equilibria in various classes of games
- Computation of Nash equilibrium in practice

- Computation of mixed strategy Nash equilibrium
- Minimax, Maximin
 - In general not equilibrium but prescription of behavior for one player
- Properties of Nash equilibria in various classes of games
- Computation of Nash equilibrium in practice

- Computation of mixed strategy Nash equilibrium
- Minimax, Maximin
- Properties of Nash equilibria in various classes of games
- Computation of Nash equilibrium in practice

- Computation of mixed strategy Nash equilibrium
- Minimax, Maximin
- Properties of Nash equilibria in various classes of games
- Computation of Nash equilibrium in practice

$$\min U_{-i}$$
(3)
s.t. $\sum_{a_i \in A_i} u_{-i}(a_i, a_{-i})\sigma_i(a_i) \le U_{-i}, \quad \forall a_{-i} \in A_{-i}$ (4)
 $\sum_{a_i \in A_i} \sigma_i(a_i) = 1$ (5)
 $\sigma_i(a_i) \ge 0, \quad \forall a_i \in A_i$ (6)

##