Game tree

$E 1$ denotes the dangerous position on $(1,1), E 2$ on $(3,3)$. Note the labels of actions. Every action name includes the label of the information set (information sets are labelled using grey background) where it took place. This is a good practice since it ensures identical labelling of actions leading from states of one information set. Furthermore it ensures creation of unique sequence names (there are not multiple different actions labelled as R).

Conversion to normal-form

	E_{1}	E_{2}
A	$5,-5$	$10,-10$
B	$11,-11$	$5.5,-5.5$

The set of pure strategies for player 1 is $S_{1}=\left\{\left(U_{I_{11}}, U_{I_{12}}, R_{I_{13}}, R_{I_{14}}, R_{I_{15}}\right.\right.$, $\left.R_{I_{16}}, R_{I_{17}}, U_{I_{18}}, U_{I_{19}}, U_{I_{110}}, U_{I_{111}}\right),\left(R_{I_{11}}, U_{I_{12}}, R_{I_{13}}, R_{I_{14}}, R_{I_{15}}, R_{I_{16}}, R_{I_{17}}, U_{I_{18}}\right.$, $\left.\left.U_{I_{19}}, U_{I_{110}}, U_{I_{111}}\right)\right\}$, and for player $2 S_{2}=\left\{\left(E_{1}\right),\left(E_{2}\right)\right\}$. For clarity we will substitute the pure strategies for player 1 as $S_{1}=\{A, B\}$

Normal-form LP

$$
\text { s.t. } \quad \begin{aligned}
\min _{\delta_{1}} & U_{2} \\
E_{1}:-5 \delta_{1}(A)-11 \delta_{1}(B) & \leq U_{2} \\
E_{2}:-10 \delta_{1}(A)-5.5 \delta_{1}(B) & \leq U_{2} \\
\delta_{1}(A)+\delta_{1}(B) & =1 \\
\delta_{1}(A) & \geq 0 \\
\delta_{1}(B) & \geq 0
\end{aligned}
$$

The $\delta_{1}(a)$ was used as the probability that the pure strategy a will occur given the mixed strategy δ_{1}, since the original σ_{1} is confusing as we denoted sequence using σ.

