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• We focus on non-cooperative rational agents that aim to maximize their utility values.

• A game is defined by a mechanism that can be described using following sets (this is not a formal
definition):

– N− players

– A− actions

– U− utility/outcome for each combination of actions

– S− states of the game

– K− knowledge of players

• We seek an optimal strategy for a given game – different knowledge of players and possibly other
assumptions on the game can be incorporated using different solution concepts.

• The default solution concept is the Nash Equilibrium that describes behaviors of agents under the
assumption that rationality of all agents is common knowledge.

• There are other solution concepts, such as Correlated Equilibrium or Stackelberg Equilibrium, that
pose further assumptions on the game (i.e., an existence of a correlation device in the first case, or
commitment to some strategy by the first player in the second case).

• We can have a different representation for games:

– normal-form games (visualized as game matrices; typically one-shot games with simultaneous
moves – prisoner’s dilemma )

– extensive-form games (visualized as game trees; typically multi-stage games with possibly im-
perfect information or non-determinism – chess, poker)

– stochastic games (visualized as general graphs; possibly infinite games with rewards in any
stage of the game)

• The games could be described using different representation (in principle, we can formalize extensive-
form games using the (exponentially large) normal-form representation)

• Consider a two-player general-sum (or non-zero-sum) game

X Y Z
A (1, 3) (6, 1) (4, 2)
B (0, 4) (2, 9) (−1, 3)
C (2,−1) (5, 2) (6, 3)

• By iterative removing dominated strategies we can (in this case) find pure Nash equilibrium CZ.
Pareto optimal solutions are BY and CZ, because they are not pareto-dominated by any other profile
of strategies.
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• Note, that we can safely remove strictly/strongly dominated strategies, because they will never be
played by a rational agent (regardless on the action of the opponent, the player can always improve
her strategy). This is not true for weaker notion of dominance (i.e., if we remove strategies that are
weakly dominated we can possibly loose some equilibrium strategy profiles).

• Strategy can be dominated not only by a pure strategy (e.g., in the case of the example B is dominated
by C), but also a mixed strategy.

• For finite games Nash equilibrium (NE) within mixed strategies always exists, which is not true only
for pure strategies.

• Consider a two-player zero-sum game

L R
U (3,−3) (−1, 1)
D (−2, 2) (1,−1)

• This game has no pure NE, however we can find a mixed NE as follows:

– let’s assume the row player will play some mixed strategy x1, x2

– now the expected utility for the column player is E[L] = −3x1 + 2x2 and E[R] = x1 − x2

– the column player will play best-response to our strategy, therefore the utility value the column
player will gain is equal to max(E[L],E[R])

– since we are in the zero-sum setting, the utility value for the row player will be equal to
−max(E[L],E[R]) = min(E[L],E[R]) = min(3x1 − 2x2,−x1 + x2)

– let’s denote this term as z, and the ultimate goal of the row player is to maximize her utility
value, therefore find x1 and x2 such that z will be maximal

– we can formalize that as a set of linear equations as follows:

max z (1)
s.t. x1 + x2 = 1 (2)

x1, x2 ≥ 0 (3)
z ≤ 3x1 − 2x2 (4)
z ≤ −x1 + x2 (5)

– by solving these equations we obtain a solution x1 = 3
7 and x2 = 4

7 , for which z = 1
7

– since in zero-sum games the maxmin, minmax and NE solution concepts coincide, this is a Nash
equilibrium of the game

– general LP for computing NE is in (Shoham and Leyton-Brown: Multi-agent Systems, 2009,
pp. 90-91)

max V∗ (6)
s.t.

∑
j∈A1

u1(a j
1, a

k
2) · x j ≥ V∗ ∀k ∈ A2 (7)∑
j∈A1

x j = 1 (8)
x j ≥ 0 ∀ j ∈ A1 (9)

• There can be multiple Nash equilibria (even for zero-sum games). For zero-sum games, they all have
the same value (termed as the value of the game), for general-sum games, they can have different
utility values.

• from the computational perspective, the zero-sum games are the easiest class of games to solve (i.e.,
to find a NE) – constructing and solving a linear program can be done in polynomial time

2



• finding a solution to a general-sum games is computationally hard (complexity class PPAD) and
finding a specific solution (e.g., a NE with maximal social welfare) is NP-complete∑

j∈A1
u1(a j

1, a
k
2) · x j + tk

2 = V∗ ∀k ∈ A2 (10)∑
k∈A2

u2(a j
1, a

k
2) · yk + t j

1 = V∗ ∀ j ∈ A1 (11)∑
j∈A1

x j = 1 (12)∑
k∈A2

yk = 1 (13)

x j ≥ 0, t j
1 ≥ 0 ∀ j ∈ A1 (14)

yk ≥ 0, tk
2 ≥ 0 ∀k ∈ A2 (15)

x j · t
j
1 = 0 ∀ j ∈ A1 (16)

yk · tk
2 = 0 ∀k ∈ A2 (17)

• different solution concepts can be simpler or harder to find (e.g., Correlated and Stackelberg equi-
librium are both computationally simpler than NE – in general-sum case they are computable in
polynomial time).

Consider a two-player game in the extensive form depicted in figure. Player one is playing in the dark
nodes, the second player is playing in the white nodes; each of the player is maximizing its utility value.

(a) Compute a subgame-perfect pure Nash equilibrium (if one exists) and visualize the solution (i.e., the
strategy profile) in the figure.

(b) Rewrite this game in the normal form (do not omit any strategies!).

(c) Write down all pure Nash equilibria (if some exist).

(d) Identify weakly dominated strategies and iteratively remove these strategies from the normal form
representation of the game — remove as many strategies as possible.
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