

Solving Zero-Sum Extensive-Form Games

Branislav Bošanský

AE4M36MAS, Fall 2013, Lecture 6

Imperfect Information EFGs

Solving II Zero-Sum EFG with perfect recall

Exact algorithms:

- Transformation to the normal form
- Using the sequence form
- (Iterative improvements of the sequence form)

Approximate algorithms:

- Counterfactual Regret Minimization
- Excessive Gap Technique
- (variants of Monte-Carlo Tree Search)

Imperfect Information Zero-Sum EFG

Imperfect Information Zero-Sum EFG

	XZ	XW	YZ	YW
ACE	3	3	1	1
ACF	3	3	1	1
ADE	-2	-2	3	3
ADF	-2	-2	3	3
BCE	2	0	2	0
BCF	1	3	1	3
BDE	2	0	2	0
BDF	1	3	1	3

- alternative representation of strategies
- $\sigma_i \in \Sigma_i$
- we use $\sigma_i a$ to denote executing an action a after the sequence σ_i

II EFGs - Sequences

Circle (Σ_1)	Triangle (Σ_2)
Ø	Ø
А	Х
В	Y
AC	Z
AD	W
BE	
BF	

- extension of the utility function g
 - $g_i: \Sigma_1 \times \Sigma_2 \to \mathbb{R}$
- sequentially execute actions of the players
 - stop at either:
 - leaf $-z \in Z$ $g_i(\sigma_1, \sigma_2) = u_i(z)$
 - there is no applicable action $g_i(\sigma_1, \sigma_2) = 0$

II EFGs - Sequences

$\begin{array}{c} \text{Circle} \\ (\Sigma_1) \end{array}$	Triangle (Σ_2)
Ø	Ø
А	Х
В	Y
AC	Z
AD	W
BE	
BF	

- Examples
 - $g_1(\emptyset, W) = 0$
 - $g_1(AC, W) = 0$
 - $g_1(BF, W) = 3$

• ...

- behavioral strategies represented as realization plans
 - probabilities for sequences
 - assume the opponent allows us to play the actions from the sequence
 - RP ~ probability that this sequence will be played in this strategy

В А Х Ζ W С D С D Ε F Ε F 3 -2 1 3 2 1 3 0

- $r_1(\emptyset) = 1$
- $r_1(A) + r_1(B) = r_1(\emptyset)$
- $r_1(AC) + r_1(AD) = r_1(A)$
- $r_1(BE) + r_1(BF) = r_1(B)$

Circle
(Σ_1)Triangle
(Σ_2)ØØAXBYACZADW

- $r_2(\emptyset) = 1$
- $r_2(X) + r_2(Y) = r_2(\emptyset)$

BE

BF

•
$$r_2(Z) + r_2(W) = r_2(\emptyset)$$

network-flow perspective

II EFGs – Sequence Form LP

- calculate NE
 - optimization against a best-response of the opponent
 - $\mathcal{I}(\sigma)$ information set, in which the last action was executed
 - *seq(I)* sequence leading to an information set *I*
 - v_{I_i} expected utility in an information set

- max $v_{\mathcal{I}(\emptyset)}$
- $r_1(\emptyset) = 1$
- $\forall I_{1,k} \in I_1, \sigma = seq(I_{1,k}): r_1(\sigma) = \sum_{\{a \in A(I_{1,k})\}} r_1(\sigma a)$
- $\forall \sigma_2 \in \Sigma_2$: $v_{\mathcal{I}(\sigma_2)} \leq \sum_{\{I_{2,j}: seq(I_{2,j}) = \sigma_2\}} v_{I_{2,j}} + \sum_{\sigma_1} g_1(\sigma_1, \sigma_2) r_1(\sigma_1)$

Alternative algorithms - learning

- instead of calculating the exact NE, we can learn the best strategy to play
- repeatedly play the game and adjust the strategy according to the observations
- hopefully, we should converge to an equilibrium

- the simplest learning rule in games:
 - fictitious play
 - assume the opponent is playing NE strategy
 - we should play the best response against it
 - we can do that at each iteration

Fictitious play

- 1. assume some a-priori strategy of the opponent (e.g., uniform)
- 2. calculate pure best-response strategy
- 3. play this strategy and observe the action of the opponent
- 4. update the belief about the mixed strategy of the opponent
- 5. repeat from step 2

Fictitious play and learning

- for many game models FP converges to a NE (e.g., zero-sum)
- the convergence is rather slow
- there are different variants ...
- we are interested in **no-regret learning** algorithms

Reminder - regret

• Player *i*'s regret for playing an action a_i if the other players adopt action profile a_{-i}

$$\left[\max_{a_{i}'\in A_{i}}u_{i}(a_{i}',a_{-i})\right]-u_{i}(a_{i},a_{-i}).$$

- we can use the concept of regret to learn the optimal strategy
 - to find such a strategy that would not yield less than playing any pure strategy

No-regret Learning: Regret Matching

- let's define α^t the average reward throughout iterations $1 \dots t$
- let's define α^t(s) the average reward throughout iterations 1 ... t
 the player would have played s and all the opponents play as before
- regret at time t the agent experiences for not having played s equals $R^t(s) = \alpha^t(s) - \alpha^t$
- learning rule is "no-regret" if it guarantees that with high probability the agent will experience no positive regret
- Regret matching
 - start with an arbitrary strategy (e.g., uniform)
 - at each time step each action is chosen with probability proportional to its regret

•
$$p^{t+1}(s) = \frac{R^t(s)}{\sum_{\{s' \in S\}} R^t(s')}$$

Application of no-regret learning in EFGs

- Counterfactual Regret Minimization (CFR)
 - construct the complete game tree
 - in each iteration traverse through the game tree and adapt the strategy in each information set according to the learning rule
 - this learning rule minimizes the (counterfactual) regret
 - it was proven that the algorithm minimizes the overall regret in the game

Comparing the algorithms

- Sequence form
 - the leading exact algorithm
 - suffers from memory requirements
 - improved by iterative double-oracle construction of the game tree
- CFR
 - more memory-efficient
 - many incremental variants (MC-CFR,...)
 - leading algorithm for solving Poker
 - can solve some games with imperfect recall