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Solving II Zero-Sum EFG with perfect recall

Exact algorithms:
 Transformation to the normal form

 Using the sequence form

 (Iterative improvements of the sequence form)

Approximate algorithms:
 Counterfactual Regret Minimization

 Excessive Gap Technique

 (variants of Monte-Carlo Tree Search)



Imperfect Information Zero-Sum EFG
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Imperfect Information Zero-Sum EFG

XZ XW YZ YW

ACE 3 3 1 1

ACF 3 3 1 1

ADE -2 -2 3 3

ADF -2 -2 3 3

BCE 2 0 2 0

BCF 1 3 1 3

BDE 2 0 2 0

BDF 1 3 1 3
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II EFGs - Sequences Circle 
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• alternative representation of strategies
• 𝜎𝑖 ∈ Σ𝑖
• we use 𝜎𝑖𝑎 to denote executing an action 𝑎 after the sequence 𝜎𝑖
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• extension of the utility function g
• 𝑔𝑖: Σ1 × Σ2 → ℝ

• sequentially execute actions of the players
• stop at either:

• leaf  - z ∈ 𝑍 𝑔𝑖 𝜎1, 𝜎2 = 𝑢𝑖(𝑧)
• there is no applicable action 𝑔𝑖 𝜎1, 𝜎2 = 0
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II EFGs - Sequences Circle 
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• Examples
• 𝑔1 ∅,𝑊 = 0
• 𝑔1 𝐴𝐶,𝑊 = 0
• 𝑔1 𝐵𝐹,𝑊 = 3
• …

3 -2 1 3 2 1 0 3

A B

C D C D E F E F

X Y Z W



II EFGs – Realization Plans Circle 
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• behavioral strategies represented as realization plans
• probabilities for sequences
• assume the opponent allows us to play the actions from the 

sequence
• RP ~ probability that this sequence will be played in this strategy
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• 𝑟1 ∅ = 1
• 𝑟1 𝐴 + 𝑟1 𝐵 = 𝑟1 ∅
• 𝑟1 𝐴𝐶 + 𝑟1 𝐴𝐷 = 𝑟1 𝐴
• 𝑟1 𝐵𝐸 + 𝑟1 𝐵𝐹 = 𝑟1 𝐵

• 𝑟2 ∅ = 1
• 𝑟2 𝑋 + 𝑟2 𝑌 = 𝑟2 ∅
• 𝑟2 𝑍 + 𝑟2 𝑊 = 𝑟2 ∅

• network-flow perspective



II EFGs – Sequence Form LP

• calculate NE
• optimization against a best-response of the opponent
• ℐ(𝜎) – information set, in which the last action was executed
• seq(I) – sequence leading to an information set I
• 𝑣𝐼𝑖 - expected utility in an information set

• max𝑣ℐ ∅
• 𝑟1 ∅ = 1

• ∀𝐼1,𝑘 ∈ 𝐼1, 𝜎 = 𝑠𝑒𝑞 𝐼1,𝑘 : 𝑟1 𝜎 =  𝑎∈𝐴 𝐼1,𝑘
𝑟1(𝜎𝑎)

• ∀𝜎2∈ Σ2: 𝑣ℐ 𝜎2 ≤  𝐼2,𝑗:𝑠𝑒𝑞 𝐼2,𝑗 =𝜎2
𝑣𝐼2,𝑗 +  𝜎1 𝑔1 𝜎1, 𝜎2 𝑟1(𝜎1)



Alternative algorithms - learning

• instead of calculating the exact NE, we can learn the best strategy to 
play

• repeatedly play the game and adjust the strategy according to the 
observations

• hopefully, we should converge to an equilibrium

• the simplest learning rule in games:
• fictitious play

• assume the opponent is playing NE strategy
• we should play the best response against it
• we can do that at each iteration



Fictitious play

1. assume some a-priori strategy of the opponent (e.g., uniform)
2. calculate pure best-response strategy
3. play this strategy and observe the action of the opponent
4. update the belief about the mixed strategy of the opponent
5. repeat from step 2
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Fictitious play and learning

• for many game models FP converges to a NE (e.g., zero-sum)
• the convergence is rather slow
• there are different variants …

• we are interested in no-regret learning algorithms
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Reminder - regret

• Player 𝑖’s regret for playing an action 𝑎𝑖 if the other players adopt 
action profile 𝑎−𝑖

• we can use the concept of regret to learn the optimal strategy
• to find such a strategy that would not yield less than playing any 

pure strategy



No-regret Learning: Regret Matching

• let’s define 𝛼𝑡 the average reward throughout iterations 1… 𝑡
• let’s define 𝛼𝑡(𝑠) the average reward throughout iterations 1… 𝑡

the player would have played 𝑠 and all the opponents play as before
• regret at time 𝑡 the agent experiences for not having played 𝑠

equals 𝑅𝑡 𝑠 = 𝛼𝑡 𝑠 − 𝛼𝑡

• learning rule is “no-regret” if it guarantees that with high probability 
the agent will experience no positive regret

• Regret matching
• start with an arbitrary strategy (e.g., uniform)
• at each time step each action is chosen with probability 

proportional to its regret

• 𝑝𝑡+1 𝑠 =
𝑅𝑡(𝑠)

 𝑠′∈𝑆 𝑅𝑡(𝑠′)



Application of no-regret learning in EFGs

• Counterfactual Regret Minimization (CFR)
• construct the complete game tree
• in each iteration traverse through the game tree and adapt the 

strategy in each information set according to the learning rule
• this learning rule minimizes the (counterfactual) regret
• it was proven that the algorithm minimizes the overall regret in 

the game



Comparing the algorithms

• Sequence form 
• the leading exact algorithm
• suffers from memory requirements

• improved by iterative double-oracle construction of the 
game tree

• CFR
• more memory-efficient
• many incremental variants (MC-CFR,…)
• leading algorithm for solving Poker
• can solve some games with imperfect recall


