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Game Theory
• Game theory is the study of strategic decision making, the study of 

mathematical models of conflict and cooperation between intelligent 
rational decision-makers, interactive decision theory

• Given the rule of the game, game theory studies strategic behaviour of 
the agents in the form of a mixed/pure strategy (e.g. optimality, 
stability)

• Given the strategic behavior of the agents, mechanism design (reverse 
game theory) studies(designs) the rule 
of games with respect to a specific outcome of 
the game    
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Types of Games
• Cooperative or non-cooperative
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Types of Games
• Cooperative or non-cooperative
• Symmetric and asymmetric
• Zero-sum and non-zero-sum
• Simultaneous and sequential
• Perfect information and imperfect information (complete info. games)
• Combinatorial games
• Infinitely long games
• Discrete and continuous games, differential games
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TCP Backoff Game
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TCP Backoff Game
• Consider this situation as a two-player game:

– both use a correct implementation: both get 1 ms delay
– one correct, one defective: 4 ms delay for correct, 0 ms for defective
– both defective: both get a 3 ms delay.
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TCP Backoff Game
• Consider this situation as a two-player game:

– both use a correct implementation: both get 1 ms delay
– one correct, one defective: 4 ms delay for correct, 0 ms for defective
– both defective: both get a 3 ms delay.

• Questions:
– What action should a player of the game take?
– Would all users behave the same in this scenario?
– What global patterns of behaviour should the system designer expect?
– Under what changes to the delay numbers would behavior be the same?
– What effect would communication have?
– Repetitions? (finite? infinite?)
– Does it matter if I believe that my opponent is rational?
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Game definition
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Game definition
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C D

Cx ⎯1, ⎯1 ⎯ 4, 0

Dx 0, ⎯ 4 ⎯3, ⎯3
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Other Games: Coordination Games 

   driving side                                 battle of sexes
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Left Right

Leftx 1 0

Rightx 0 1

B F

Bx 2, 1 0, 0

Fx 0, 0 1, 2
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Other Games: Coordination Games 
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Other Games: Prisoners Dilemma
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BC BD

        AC 1 ,1 5, 0

        AD 0, 5 3, 3
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a, a b, c

c, b d, d

c ⌫ a ⌫ d ⌫ b

Other Games: Prisoners Dilemma
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BC BD

        AC

        AD

any game where
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Other Games: Matching Pennies
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Heads Tails

Headsx 1, -1 -1, 1

Tailsx -1, 1 1, -1
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Other Games: Matching Pennies
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Heads Tails

Headsx 1, -1 -1, 1

Tailsx -1, 1 1, -1

Heads Tails

Headsx 1 -1

Tailsx -1 1
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Other Games: Rock-paper-scissors

19

Rock Paper Scissors

Rockx 0 -1 1

Paperx 1 0 -1

Scissorsx -1 1 0
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strategy     refers to a decision (about action choice) at each 
stage of the game that the agent   makes and which leads to an 
outcome
outcome is the set of possible states resulting from agent’s 
decision making
strategy profile refers to the set of strategies played by the 
agents. Set of strategy profiles:

20

Properties of the games

Wednesday, October 16, 13



Properties of the games
• Social welfare (Collective utility):

• Cooperative agents choose such     that maximizes
• Self-interested (individually rational) agents choose such    that 

maximizes

• When designing a multiagent system designers worry about:
– individual rationality of each agent 
– social welfare and welfare efficiency
– stability of the strategy (action) profile

21

U(a) =
X

8i
ui(ai)
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Solution Concepts
• Pareto Efficiency
• Social welfare optimality
• Nash equilibrium
• Maxmin 
• Dominant strategies
• Correlated equilibrium
• Minimax regret
• Stackelberg equilibrium
• Perfect equilibrium
•   - Nash equilibrium

22

✏

Wednesday, October 16, 13



Solution Concepts
• Pareto Efficiency
• Social welfare optimality
• Nash equilibrium
• Maxmin 
• Dominant strategies
• Correlated equilibrium
• Minimax regret
• Stackelberg equilibrium
• Perfect equilibrium
•   - Nash equilibrium

23

✏

Wednesday, October 16, 13



Solution Concepts
• Pareto Efficiency
• Social welfare optimality
• Nash equilibrium
• Maxmin 
• Dominant strategies
• Correlated equilibrium
• Minimax regret
• Stackelberg equilibrium
• Perfect equilibrium
•   - Nash equilibrium

24

✏

Wednesday, October 16, 13



Pareto Efficiency
• Pareto Efficiency: 

– action (strategy) profile is Pareto optimal if there is no other action
that at least one agent is better off and no other agent is worse off 
than in the given profile

• Dominance:
– measure comparing two strategies. b dominates weakly a as follows:

– dominant strategy: strategy that is not dominated by any other strategy

• Pareto efficient strategy is such a strategy that is not weakly dominated 
by any other strategy
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Pareto Efficiency
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C D

        C -1, -1 -4, 0

        D 0, -4 -3, -3
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Pareto Efficiency
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Pareto Efficiency
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Heads Tails

Headsx 1 -1

Tailsx -1 1

C D

        C -1, -1 -4, 0

        D 0, -4 -3, -3

C D
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Pareto Efficiency
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Pareto Efficiency
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Pareto Efficiency

32

Left Right

Leftx 1 0

Rightx 0 1

B F

Bx 2, 1 0, 0

Fx 0, 0 1, 2

Heads Tails

Headsx 1 -1

Tailsx -1 1

C D

        C -1, -1 -4, 0

        D 0, -4 -3, -3

Left Right

Leftx 1 0

Rightx 0 1

Heads Tails

Headsx 1 -1

Tailsx -1 1

C D

        C -1, -1 -4, 0

        D 0, -4 -3, -3

Wednesday, October 16, 13



Pareto Efficiency
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8i, ai 2 BR(a�i)

Nash Equilibrium

35

Definition (Nash Equilibrium)

The strategy profile                           is in Nash Equilibrium iffa = ha1, . . . , ani

Definition (Best Response)

a⇤i 2 BR(a�i) i↵ 8ai 2 Ai, ui(a
⇤
i , a�i) � ui(ai, a�i)

• If you know what everyone else was going to do, it would easy to 
pick your own actions 

• Let                                                           now ai = ha1, . . . , ai�1, ai+1, . . . , ani. a = (a�i, ai)

Wednesday, October 16, 13



Nash Equilibrium
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8i, ai 2 BR(a�i)

Definition (Strict Nash Equilibrium)

The strategy profile                           is in Nash Equilibrium iff
                           where

a = ha1, . . . , ani
|BR(a�i)| = 1

Definition (Weak Nash Equilibrium)

The strategy profile is in Weak NE iff it is not Strict NE 
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Nash Equilibrium
• Nash equilibrium, is a set of strategies, one for each player, such that 

no player has incentive to unilaterally change her action. Players are in 
equilibrium if a change in strategies by any one of them would lead 
that player to earn less than if she remained with her current strategy.
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• Strong Nash Equilibrium is such an equilibrium that is stable against 
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Nash Equilibrium
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C D
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Nash Equilibrium
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Nash Equilibrium
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Nash Equilibrium
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Nash Equilibrium
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Nash Equilibrium

42

Left Right

Leftx 1 0

Rightx 0 1

B F

Bx 2, 1 0, 0

Fx 0, 0 1, 2

Heads Tails

Headsx 1 -1

Tailsx -1 1

C D

        C -1, -1 -4, 0

        D 0, -4 -3, -3

Wednesday, October 16, 13



Nash Equilibrium
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Strong Nash Equilibrium
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Strong Nash Equilibrium
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Nash Equilibrium
• Nash equilibrium, is a set of strategies, one for each player, such that 

no player has incentive to unilaterally change her action. Players are in 
equilibrium if a change in strategies by any one of them would lead 
that player to earn less than if she remained with her current strategy.

• Strong Nash Equilibrium is such an equilibrium that is stable against 
deviations by cooperation. 
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8i, ai 2 BR(a�i)

Definition (Strict Nash Equilibrium)

The strategy profile                           is in Nash Equilibrium iff
                           where

a = ha1, . . . , ani
|BR(a�i)| = 1

Definition (Weak Nash Equilibrium)

The strategy profile is in Weak NE iff it is not Strict NE 

Wednesday, October 16, 13



Nash Equilibrium
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Nash Equilibrium

• Weak NE are less stable than Strong NE.
– in Weak NE there is at least 1 agent with > 1 BR, while 1 is in NE.Pure NE 

can be either Weak or Strong NE
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Nash Equilibrium

• Weak NE are less stable than Strong NE.
– in Weak NE there is at least 1 agent with > 1 BR, while 1 is in NE.Pure NE 

can be either Weak or Strong NE
• Mixed NE are always Weak NE

– if there are at least 2 pure strategies in BR, any combination of them is in NE
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Nash Equilibrium

• Weak NE are less stable than Strong NE.
– in Weak NE there is at least 1 agent with > 1 BR, while 1 is in NE.Pure NE 

can be either Weak or Strong NE
• Mixed NE are always Weak NE

– if there are at least 2 pure strategies in BR, any combination of them is in NE
• Strict NE are always Pure NE
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Prisoners Dilemma: PE, NE
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Prisoners Dilemma: PE, NE
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BC BD

        AC 1, 1 5, 0

        AD 0, 5 3, 3

PE NE

The paradox of Prisoner’s Dilemma: the Nash equilibrium is the only 
non-Pareto-optimal outcome
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BC BD
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dominant

The paradox of Prisoner’s Dilemma: the Nash equilibrium is the only 
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Prisoners Dilemma: PE, NE
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BC BD

        AC 1, 1 5, 0

        AD 0, 5 3, 3

PE

NEdominant

social 
welfare optimal

The paradox of Prisoner’s Dilemma: the Nash equilibrium is the only 
non-Pareto-optimal outcome
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Example: Routing

54

• 1,000 drivers travel from S to D on either S→A→D or S→B→D
• Road from S → A, B → D is long: t = 50 minutes for any |cars|
• Road from A → D, S → B is shorter but is narrow t = |cars|/25

• Nash equilibrium:
– 500 cars go through A, 500 through B with time is 50 + 500/25 = 70m
– If a single driver changes the route, there are 501 cars on that route: time ↑
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Braess’s Paradox
• Suppose we add a new road from B to A
• The road is so wide and short that it takes 0 minutes to traverse it
• Nash equilibrium:

– All 1000 cars go S→B→A→D
– Time for S→B is 1000/25 = 40 minutes
– Total time is 80 minutes

• To see that this is an equilibrium:
– If driver goes S→A→D, his/her cost is 50 + 40 = 90 minutes
– If driver goes S→B→D, his/her cost is 40 + 50 = 90 minutes
– Both are dominated by S→B→A→D

• To see that it’s the only Nash equilibrium:
– For every traffic pattern, S→B→A→D dominates S→A→D and 

S→B→D
55
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Mediated Prisoners Dilemma
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Cooperate Defect

Cooperate
x 1, 1 5, 0

Defectx 0, 5 3, 3

Wednesday, October 16, 13



Mediated Game
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Mediator Cooperate Defect

Mediatorx 1, 1 0, 5 2, 2

Cooperate
x 5, 0 1, 1 5, 0

Defectx 2, 2 0, 5 3, 3

Wednesday, October 16, 13



Mediated Equilibrium
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Mediator Cooperate Defect

Mediatorx 1, 1 0, 5 2, 2

Cooperate
x 5, 0 1, 1 5, 0

Defectx 2, 2 0, 5 3, 3
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Iterated Prisoner Dilemma
• The problem of repeatedly played PD game. Optimization for total 

count of each player outcome. Sometimes IPD can be played against a 
range of different; opponents (or even several at the same time).
– motives for cooperation: (i) if you know you will be meeting your opponent 

again, then the incentive to defect appears to evaporate. (ii) defection may be 
punished in the future round,

– motives for defection: (i) you can test the water by defection (ii) cooperative 
defection is the rational choice in the infinitely repeated prisoner's dilemma

59
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Iterated Prisoner Dilemma
• What strategy to choose, so as to maximize your overall payoff?
• Axelrod (1984) investigated this problem, with a computer 

tournament for programs playing the iterated prisoner's dilemma:

60

ALLD Always defect. the Hawk or Free rider strategy

ALLC Always cooperate

TITforTAT first cooperate, than do what your opponent did

TF2T Same as above, but requires TWO consecutive defections for a 
defection to be returned

STFT Suspicious TFT - first, defect. If the opponent retaliated, then play 
TITforTAT. Otherwise intersperse cooperation & defection.

JOSS As TIT-FOR-TAT, except periodically defect.
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Mixed Strategy
• In many games, deterministic strategy is very inefficient. 

– example: matching pennies, security games
• Solution: randomize selection of an action
• Pure strategy 

– agents makes the decision to play one action
• Mixed strategy 

– agents chose to play more actions with positive probabilities
– support of the mixed strategy is the set of all selected actions

• Payoff 
– given the strategy profile          for all agents, the utility for the agent

61

ui(s) =
X

a2A

ui(ai)Pr(a|s) Pr(a|s) =
Y

j2N

sj(ai)
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Mixed Strategy
Let us generalize the NE concepts for strategy profiles:

62
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Mixed Strategy
Let us generalize the NE concepts for strategy profiles:
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Mixed Strategy
• It's hard in general to compute Nash equilibria, but it's easy when you 

can guess the support (actions played with non-null probability). For BoS, 
let's look for an equilibrium where all actions are part of the support.

64

B F

Bx 2, 1 0, 0

Fx 0, 0 1, 2
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Mixed Strategy
• It's hard in general to compute Nash equilibria, but it's easy when you 

can guess the support (actions played with non-null probability). For BoS, 
let's look for an equilibrium where all actions are part of the support.

• Let player 2 play B with   , F with 1 - p.
• If player 1 best-responds with a mixed strategy, player 2 must make 

him indifferent between F and B (why?)
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66

• It's hard in general to compute Nash equilibria, but it's easy when you 
can guess the support. For BoS, let's look for an equilibrium where all 
actions are part of the support.
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• If player 1 best-responds with a mixed strategy, player 2 must make 
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Mixed Strategy

• Likewise: Let player 1 play B with   , F with 1 - p.

• Thus the mixed strategy                     is in Nash Equilibrium  

67
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Interpreting Mixed Strategy 
• What does it mean to play a mixed strategy? Different 

interpretations:
– Randomize to confuse your opponent 

✴ consider the matching pennies example
– Randomize when they are uncertain about the other's action

✴ consider battle of the sexes
– Randomize when they you allocated limited resources

• Mixed strategies are a concise description of what might happen in 
repeated play: count of pure strategies in the limit

• Mixed strategies describe population dynamics: 2 agents chosen from 
a population, all having deterministic strategies.

68
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Solution Concepts
• Pareto Efficiency
• Social welfare optimality
• Nash equilibrium
• Maxmin 
• Dominant strategies
• Correlated equilibrium
• Minimax regret
• Stackelberg equilibrium
• Perfect equilibrium
•   - Nash equilibrium

69

✏
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Deductive vs. Stable State 
• Deductive: 
– game treated as an isolated “one-shot” event 
– equilibrium reached by deductive process

• Steady-state:
– player optimizes his strategy based on his experience with the game
– equilibrium reached through adaptation/learning

70
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Maxmin Strategies
• Player’s i maxmin strategy is a strategy that maximizes her 

worst-case payoff, in the situation where the opponent(s) -i plays a 
strategy that minimizes i’s payoff.

• The maximum value (or safety level) of the game for i is the 
minimum amount of payoff guaranteed by maxmin strategy

• Good conservative strategy:
- maximize his/her expected utility without making any assumption about 

the other players
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Maxmin Strategies
• Player’s i maxmin strategy is a strategy that maximizes her 

worst-case payoff, in the situation where the opponent(s) -i plays a 
strategy that minimizes i’s payoff.

• The maximum value (or safety level) of the game for i is the 
minimum amount of payoff guaranteed by maxmin strategy

• Good conservative strategy:
- maximize his/her expected utility without making any assumption about 

the other players
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Minmax Strategies
• Player i's minmax strategy against player ‒i in a 2-player game is a 

strategy that minimizes ‒i's best-case payoff, and the minmax value 
for i against ‒i is payoff.

72
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Minmax Strategies
• Player i's minmax strategy against player ‒i in a 2-player game is a 

strategy that minimizes ‒i's best-case payoff, and the minmax value 
for i against ‒i is payoff.
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Minmax Strategies
• Player i's minmax strategy against player ‒i in a 2-player game is a 

strategy that minimizes ‒i's best-case payoff, and the minmax value 
for i against ‒i is payoff.

• Why would i want to play a minmax strategy?
- to punish the other agent as much as possible

• Minmax profile: Minmax strategy for each player
74
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Minmax Theorem

1. Each player's maxmin value is equal to his minmax value. By 
convention, the maxmin value for player 1 is called the value of the 
game.

2. For both players, the set of maxmin strategies coincides with the set 
of minmax strategies.

3. Any maxmin strategy profile (or, equivalently, minmax strategy 
profile) is a Nash equilibrium. Furthermore, these are all the Nash 
equilibria. Consequently, all Nash equilibria have the same payoff 
vector (namely, those in which player 1 gets the value of the game).

75

Wednesday, October 16, 13



Finding EQ in 2-PL Zero-Sum Game
1.Determine whether the equilibrium point is associated with pure 

strategies: 
– determine if the row player’s maxmin strategy and the column player’s 
minmax strategy coincide in the same outcome

– if this is true, then the associated strategies are the equilibrium point of 
the game

2. If pure strategies do not produce an equilibrium point
– define variables that represent the probability each player will play each 

available strategy.  
– for each player we find the probabilities that will provide the lowest 

expected payoff for the other player
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Example
• Game setting:

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3, -0.3 0.2, -0.2

Batter

Curvex 0.1, -0.1 0.4, -0.4
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Example
• Game setting:

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2

Batter

Curvex 0.1 0.4
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Example
• maximin for batter:

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2

Batter

Curvex 0.1 0.4
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Example
• maximin for batter:

PitcherPitcher

Fastball Curve min

Batter

Fastballx 0.3 0.2 0.2

Batter

Curvex 0.1 0.4 0.1
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Example
• maximin for batter:

PitcherPitcher

Fastball Curve min

Batter

Fastballx 0.3 0.2 0.2

Batter

Curvex 0.1 0.4 0.1
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Example
• minimax for pitcher:

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2

Batter

Curvex 0.1 0.4
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Example
• minimax for pitcher:

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2

Batter

Curvex 0.1 0.4

max 0.3 0.4
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Example
• minimax for pitcher:

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2

Batter

Curvex 0.1 0.4

max 0.3 0.4
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Example
• Because the maximin and minimax strategies do not equal, the 

equilibrium point is not found with pure strategies.
• What strategy should each adopt assuming best play by the opponent?

• minimax for Pitcher? such   that minimizes  

• this happens for 

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2

Batter

Curvex 0.1 0.4

p 1 – p

uB(f) = 0.3 ⇤ p+ 0.2(1� p)

uB(c) = 0.1 ⇤ p+ 0.4(1� p)

p

max (uB(f), uB(c))

uB(f) = uB(c)

0.1p+ 0.2 = �0.3p+ 0.4
p = 0.5

uB = 0.25
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Example
• Because the maximin and minimax strategies do not equal, the 

equilibrium point is not found with pure strategies.
• What strategy should each adopt assuming best play by the opponent?

• maximin for Batter? such   that maximizes  

• this happens for 

PitcherPitcher

Fastball Curve

Batter

Fastballx 0.3 0.2 q

Batter

Curvex 0.1 0.4 1- quB = 0.25

uP (f) = 0.3 ⇤ q + 0.1(1� q)

uP (c) = 0.2 ⇤ q + 0.4(1� q)

min (uP (f), uP (c))

q

uP (f) = uP (c)
0.2q + 0.1 = �0.2q + 0.4

q = 0.75
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Saddle;point:;Matching;Pennies;
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Solution Concepts
• Pareto Efficiency
• Social welfare optimality
• Nash equilibrium
• Maxmin 
• Dominant strategies
• Correlated equilibrium
• Minimax regret
• Stackelberg equilibrium
• Perfect equilibrium
•   - Nash equilibrium
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Domination

89

• dominant dominates any other strategy, dominated is dominated 
by at least one other strategy 
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Domination

90

• A strategy profile consisting of dominant strategies for every player 
must be a Nash equilibrium. 

• An equilibrium in strictly dominant strategies must be unique.
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Example

91

• Defect (D) is strongly dominant for the row player
• Defect (D) is strongly dominant for the column player
• So (D, D) is a Nash equilibrium in dominant strategies
• Ironically, of the pure strategy profiles, (D,D) is the only one that’s 

not Pareto optimal

BC BD

        AC 1, 1 5, 0

        AD 0, 5 3, 3

PE

NEdominant

social 
welfare optimal
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Example

92

• Heads isn’t dominant for the row player
• Tails isn’t dominant for the row player either
• Row player (and column player too) doesn’t have a dominant 

strategy =>  No Nash equilibrium in dominant strategies
• Dominant strategy does not always exist

Heads Tails

Headsx 1, -1 -1, 1

Tailsx -1, 1 1, -1
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Minimax Regret
Definition: Minimax regret actions for agent i are defined as:

93

L R

Tx 100, a 1-   , b

Bx 2, c 1, d

✏
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Minimax Regret
Definition: Minimax regret actions for agent i are defined as:

maxmin (safety level) for row player is to play B, but if not 
malicious (and we do not know the values of a, b, c, d), 
minimax regret for row player is to play T to minimize worst case 
loss (100-2 for playing B > than    for playing T)

94

L R

Tx 100, a 1-   , b

Bx 2, c 1, d

✏

✏
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Correlated Equilibrium
• Consider again Battle of the Sexes.

– The best outcome seems a 50-50 split between (F; F) and (B;B).
– But there's no way to achieve this, so either someone loses out (unfair) or 

both players often miscoordinate

95
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Correlated Equilibrium
• Consider again Battle of the Sexes.

– The best outcome seems a 50-50 split between (F; F) and (B;B).
– But there's no way to achieve this, so either someone loses out (unfair) or 

both players often miscoordinate
• Another classic example: traffic game

96

GO WAIT

GOx -100, -100 10, 0

WAITx 0, 10 -100, -100
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Correlated Equilibrium
• Consider again Battle of the Sexes.

– The best outcome seems a 50-50 split between (F; F) and (B;B).
– But there's no way to achieve this, so either someone loses out (unfair) or 

both players often miscoordinate
• Another classic example: traffic game

• A traffic light: a fair randomizing device that tells one of the agents 
to go and the other to wait.
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GO WAIT

GOx -100, -100 10, 0

WAITx 0, 10 -100, -100
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Correlated Equilibrium

• For every Nash equilibrium there exists a corresponding correlated 
equilibrium

• Not every correlated equilibrium is a Nash equilibrium
=> weaker notion

98
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Stackelberg Equilibrium
• A game theoretic equilibrium in which one player acts as a leader and 

another as a follower, the leader setting strategy taking account of the 
follower's optimal response. 

• Stackleberg equilibrium is studied in the context of security games.

L R

        T 1, 0 3, 2

        B 2, 1 4, 0

Nash;equilibrium

Stackelberg;equilibrium
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Computing Solution Concepts
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! Note on Linear Programing

• Set of real-valued variables
• Linear objective function
– a weighted sum of the variables

• Set of linear constraints
– a weighted sum of the variables must be 

greater than or equal to some constant

linear;program
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Note on Linear Programming

• Given n variables and m constraints, variables x and constants w, a, b:

• Can be solved in polynomial time using interior point methods.
– Interestingly, the (worst-case exponential) simplex method is often faster in 

practice.
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Computing Equilibria of Zero-Sum Games
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Computing Equilibria of Zero-Sum Games
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Computing Equilibria of Zero-Sum Games

• This formulation gives us the minmax strategy for player 2.
• To get the minmax strategy for player 1, we need to solve a second 

(analogous) LP.

105
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Computing Equilibria of General-Sum Games

• Computing  NE in general-sum has exponential worst-case 
complexity

• Solution using Lemke-Howson algorithm:  Formulates the problem 
as a linear complementarity problem (LCP)

106
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Computing Maxmin in General-Sum Games
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Removal of Dominated Strategies
• No equilibrium can involve a strictly dominated strategy
• Thus we can remove it, and end up with a strategically equivalent 

game 
– This might allow us to remove another strategy that wasn't dominated 

before

• Running this process to termination is called iterated removal of 
dominated strategies

108
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Iterated Removal of Dominated Strategies
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Iterated Removal of Dominated Strategies
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R;is;dominated;by;L
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Iterated Removal of Dominated Strategies
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Iterated Removal of Dominated Strategies
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R;is;dominated;by;L
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Iterated Removal of Dominated Strategies
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M;is;dominated;by;the;mixed;strategy;that;selects;U;and;D
with;equal;probability

Iterated Removal of Dominated Strategies
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Iterated Removal of Dominated Strategies
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M;is;dominated;by;the;mixed;strategy;that;selects;U;and;D
with;equal;probability

Iterated Removal of Dominated Strategies
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No;others;strategies;are;dominated

Iterated Removal of Dominated Strategies
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Iterated Removal of Dominated 
• Preserves Nash equilibria
– strict dominance => all equilibria preserved.
– weak or very weak dominance => at least one equilibrium preserved.

• Used as a preprocessing step before computing an equilibrium
– Some games are solvable using this technique (e.g. Traveler's Dilemma)

• Order of removal in the case of multiple dominated strategies
– strict dominance => doesn't matter.
– weak or very weak dominance => can affect which equilibria are preserved.

114
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Practical Implications of Solution 
• What to do when faced with a game of certain type?
• Zero-sum game => play any maxmin / equilibirum strategy
• General-sum game => 
– single unique equilibrium: play the equilibrium
– multiple equilibria: 

✴conservative player: play a maxmin strategy
✴otherwise need additional assumptions on how the other player chooses 

between multiple equillibria
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