A4M33MAS - Multiagent Systems Distributed Constraint Optimization

Michal Pechoucek & Michal Jakob Department of Computer Science Czech Technical University in Prague

In parts based on Multi-agent Constraint Programming, Boi Faltings, Laboratoire d'Intelligence Artificielle, EPFL

Multiagent Constraint Optimization (DCOP)

Given $\langle X, D, C, A \rangle$ where:

- $X = \{x_1, ..., x_n\}$ is a set of *n* variables.
- $D = \{d_1, ..., d_n\}$ is a set of *n* domains.
- $C = \{c_1, .., c_m\}$ is a set of *m* constraints.
- A = {a₁,.., a_n} is a set of n agents, not necessarily all different.

Find solution = $(x_1 = v_1 \in d_1, ..., x_n = v_n \in d_n)$ such that for all the overall cost of the assignment is minimized

$$\operatorname{Cost}\left(\{v_1, ..., v_n\}\right) = \sum_{\forall c_i \in C} c_i(\{v_1, ..., v_n\})$$

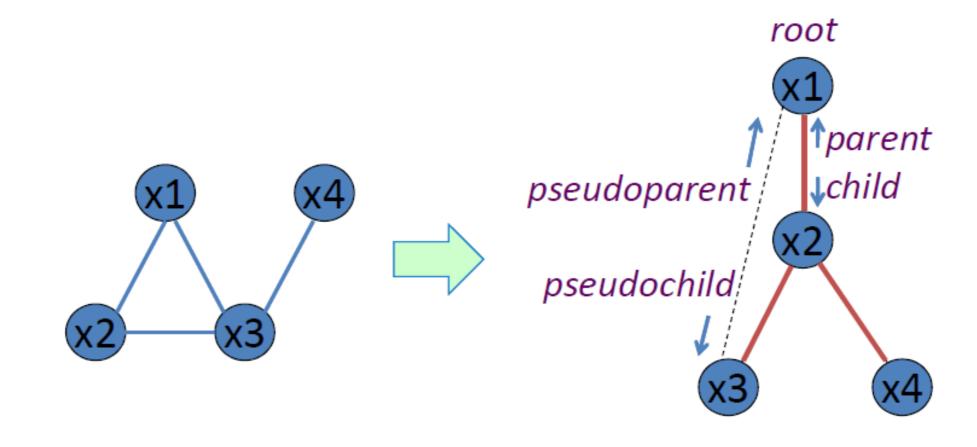
C = represented as a list of cost functions on 1 ... *n* variables in X and their values from D, so that $\mathcal{P}(X,D) \to \mathbf{R}$

ABT for DCOP

- Nogoods give lower bounds on costs.
- Compute total cost of all lower priority agents by summing nogoods.
- Nogood tags must exactly cover all lower-priority variables, otherwise some variables are not counted or counted multiple times.
- If we can prevent this from happening, then ABT works fine for optimization as well.

ADOPT

- 0
- ADOPT assumes that agents are arranged in a DFS tree:
 - constraint graph rooted graph (select a node as root)
 - some links form a tree / others are back edges
 - two constrained nodes must be in the same path to the root by tree links (same branch)
- Every graph admits a DFS tree



ADOPT: Description

- Asynchronous algorithm
- Each time an agent receives a message:
 - Processes it (the agent may take a new value)
 - Sends VALUE messages to its children and pseudochildren
 - Sends a COST message to its parentd
- **View**: set of variable value pairs (as ABT agent view) of ancestor agents, in the same branch. Current context:
 - Updated by each VALUE message

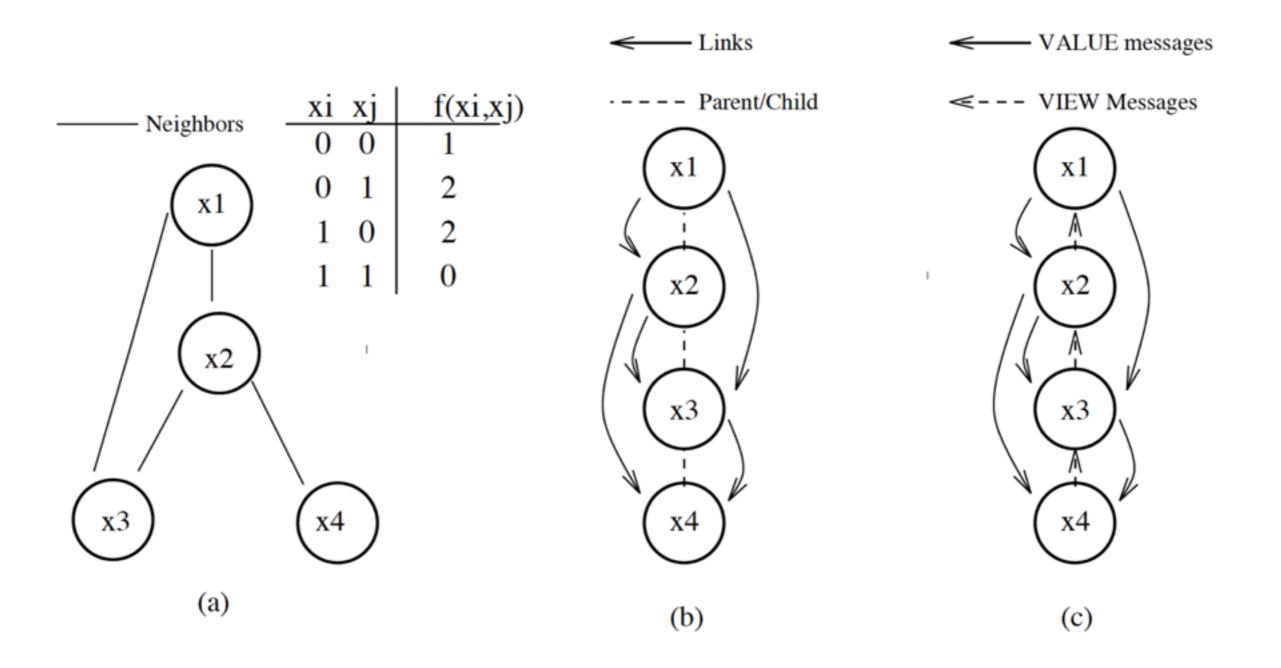
ADOPT: Description

Definition: The *local cost* δ incurred at x_i , wrt to a given view vw is defined as

$$\begin{split} \delta(x_i, vw) &= \sum_{x_j \in V} f_{ij}(d_i, d_j) \;, where \; x_i \leftarrow d_i, \\ & x_j \leftarrow d_j \; in \; vw \end{split}$$

Definition: A *view* is a set of variable/value pairs of the form $\{(x_i, d_i), (x_j, d_j)...\}$. A variable can appear in a view no more than once. Two views are *compatible* if they do not disagree on any variable assignment.

ADOPT: Example



ADOPT: Messages

0

- value(parent \rightarrow children & pseudochildren, value): parent informs descendants that it has taken value a
- **view**(child \rightarrow parent, cost, view):

child informs parent of the best cost of its assignement; attached context to detect obsolescence;

Simple-ADOPT Algorithm

Initialize: $Currentvw \leftarrow \{\}; d_i \leftarrow \text{null}; \\ \forall d \in D_i : \\ c(d) \leftarrow 0 \\ \text{hill_climb}; \end{cases}$

Simple-ADOPT Algorithm

Initialize: $Currentvw \leftarrow \{\}; d_i \leftarrow \text{null}; \ \forall d \in D_i : c(d) \leftarrow 0$

hill_climb;

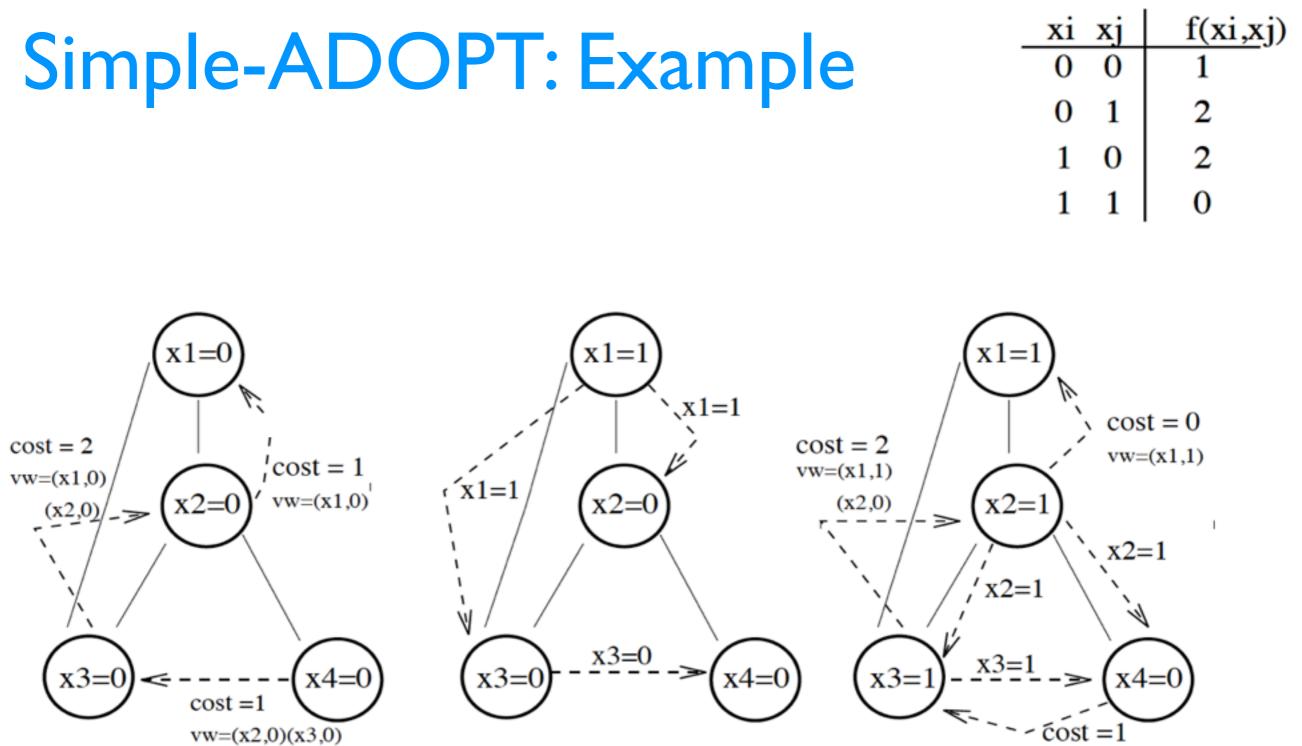
procedure hill_climb

 $\forall d \in D_i:$ # e(d) is x_i 's estimate of cost if it chooses d $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d);$ choose d that minimizes e(d)prefer current value d_i for tie; $d_i \leftarrow d;$ SEND (VALUE, (x_i, d_i)) to all linked descendents;
SEND (VIEW, Currentvw, $e(d_i)$) to
parent;

Simple-ADOPT Algorithm

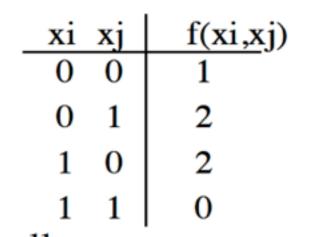
when received (VALUE, (x_j, d_j)) add (x_j, d_j) to Currentvw; # context change if Currentvw changed then $\forall d \in D_i :$ $c(d) \leftarrow 0$ end if; hill_climb;

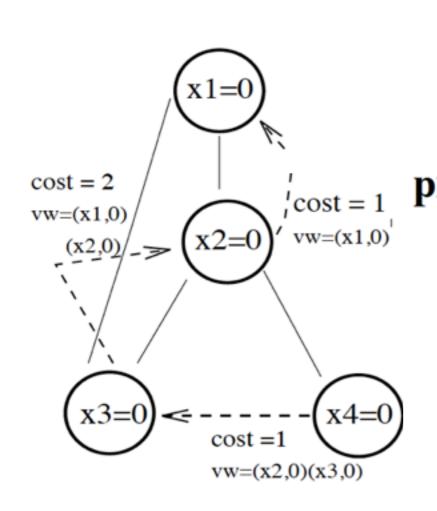
when received (VIEW, vw, cost) $d \leftarrow value of x_i in vw$ if vw is compatible with $Currentvw \cup \{(x_i, d)\}$ then $c(d) \leftarrow \max(c(d), cost);$ if c(d) changed then hill_climb; end if; end if;



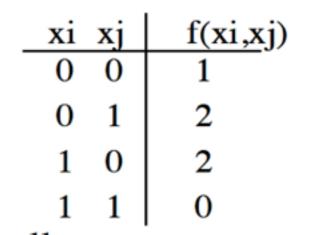
vw=(x2,0)(x3,0)

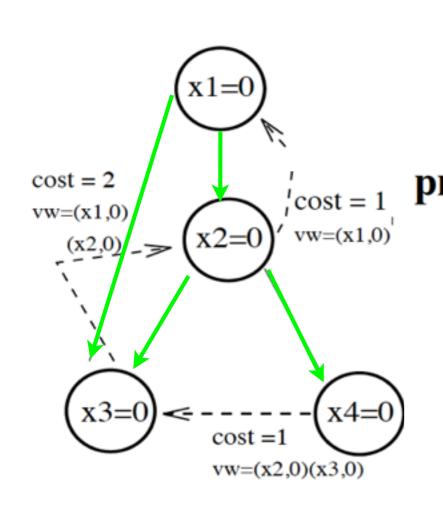
vw=(x2,0)(x3,0)



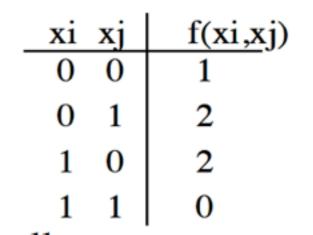


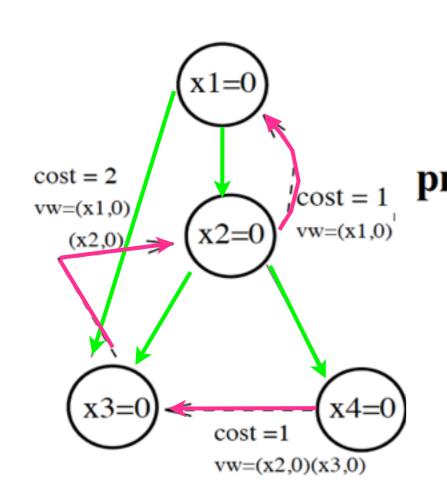
Initialize: $Currentvw \leftarrow \{\}; d_i \leftarrow \text{null};$ $\forall d \in D_i$: $c(d) \leftarrow 0$ hill_climb; procedure hill_climb $\forall d \in D_i$: # e(d) is x_i 's estimate of cost if it chooses d $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d);$ choose d that minimizes e(d)prefer current value d_i for tie; $d_i \leftarrow d;$ SEND (VALUE, (x_i, d_i)) to all linked descendents; SEND (VIEW, $Currentvw, e(d_i)$) to parent;





Initialize: $Currentvw \leftarrow \{\}; d_i \leftarrow \text{null};$ $\forall d \in D_i$: $c(d) \leftarrow 0$ hill_climb; procedure hill_climb $\forall d \in D_i$: # e(d) is x_i 's estimate of cost if it chooses d $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d);$ choose d that minimizes e(d)prefer current value d_i for tie; $d_i \leftarrow d;$ SEND (VALUE, (x_i, d_i)) to all linked descendents; SEND (VIEW, $Currentvw, e(d_i)$) to parent;





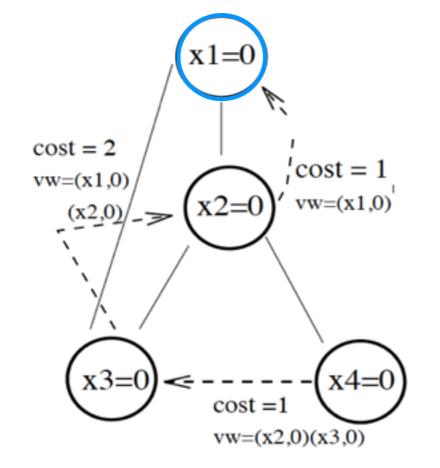
Initialize: $Currentvw \leftarrow \{\}; d_i \leftarrow \text{null};$ $\forall d \in D_i$: $c(d) \leftarrow 0$ hill_climb; procedure hill_climb $\forall d \in D_i$: # e(d) is x_i 's estimate of cost if it chooses d $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d);$ choose d that minimizes e(d)prefer current value d_i for tie; $d_i \leftarrow d;$ SEND (VALUE, (x_i, d_i)) to all linked descendents; SEND (VIEW, $Currentvw, e(d_i)$) to parent;

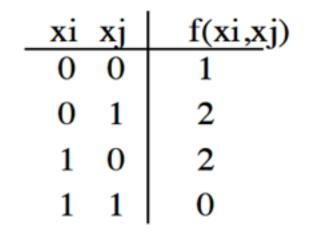
16

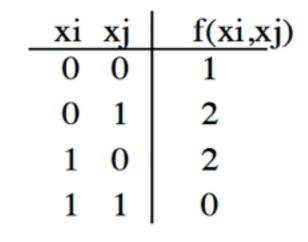
Simple-ADOPT: Example

$$cost(x_i, vw) = \sum_{x_j \in V} f_{ij}(d_i, d_j) , where \ x_i \leftarrow d_i, x_j \leftarrow d_j \ in \ vw$$

when received (VIEW, vw, cost) $d \leftarrow value of x_i in vw$ if vw is compatible with $Currentvw \cup \{(x_i, d)\}$ then $c(d) \leftarrow \max(c(d), cost);$ if c(d) changed then hill_climb; end if; end if;



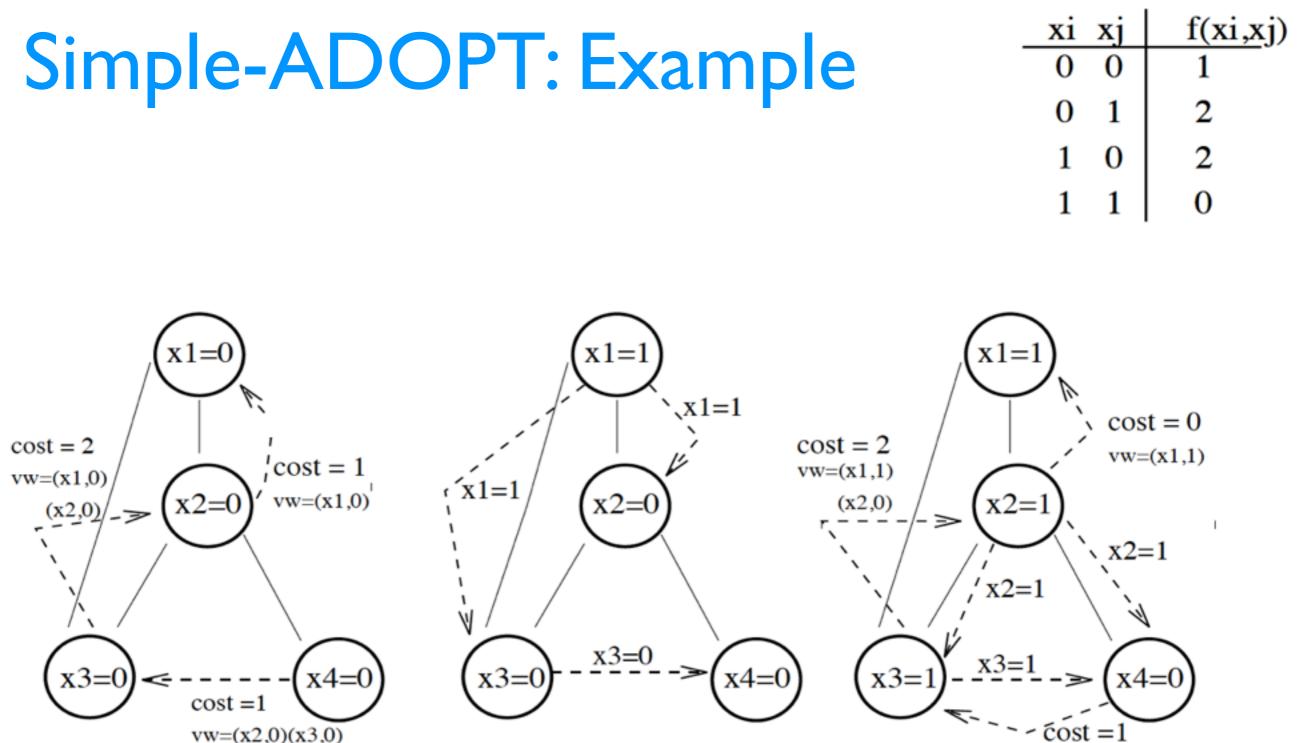




$$\begin{array}{l} cost(x_i,vw) = \sum\limits_{x_j \in V} f_{ij}(d_i,d_j) \;, where \; x_i \leftarrow d_i, \\ & x_j \leftarrow d_j \; in \; vw \end{array}$$

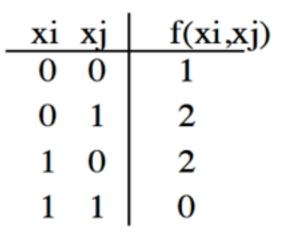
 $x_{1=0}$ $x_{1=0}$ $x_{1=0}$ $x_{1=0}$ $x_{1=0}$ $x_{2=0}$ $x_{2=0}$

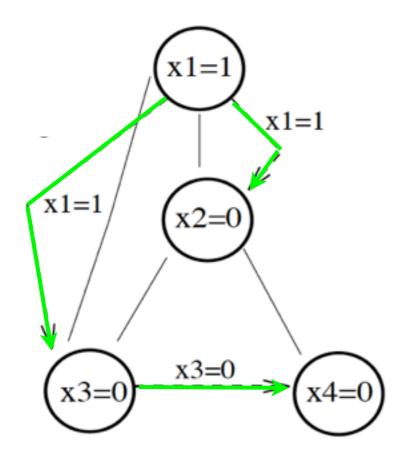
procedure hill_climb $\forall d \in D_i:$ $\# e(d) \text{ is } x_i \text{ 's estimate of cost if it chooses } d$ $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d);$ choose d that minimizes e(d)prefer current value d_i for tie; $d_i \leftarrow d;$ SEND (VALUE, (x_i, d_i)) to all linked descendents; SEND (VIEW, Currentvw, $e(d_i)$) to parent;



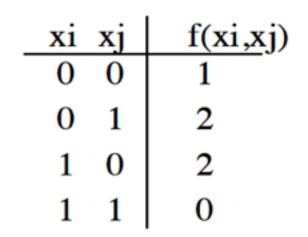
vw=(x2,0)(x3,0)

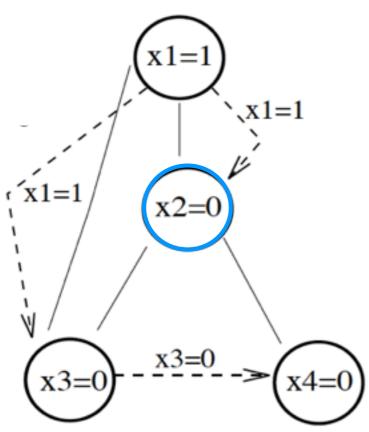
vw=(x2,0)(x3,0)





when received (VALUE, (x_j, d_j)) add (x_j, d_j) to Currentvw; # context change if Currentvw changed then $\forall d \in D_i :$ $c(d) \leftarrow 0$ end if; hill_climb;





procedure hill_climb

 $\forall d \in D_i$:

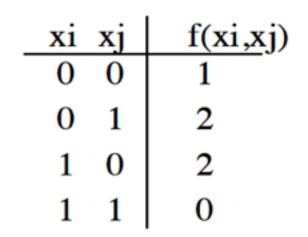
e(d) is x_i 's estimate of cost if it chooses d $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d)$ choose d that minimizes e(d)

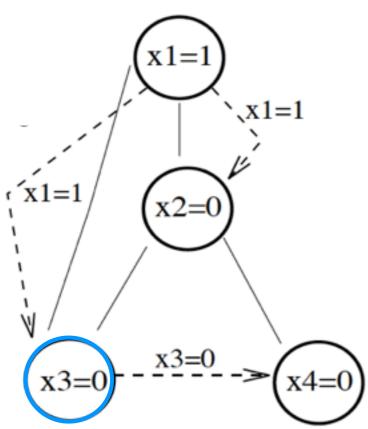
prefer current value d_i for tie;

 $d_i \leftarrow d;$

SEND (VALUE, (x_i, d_i)) to all linked descendents SEND (VIEW, $Currentvw, e(d_i)$) to parent;

$$\begin{split} \delta(x_i,vw) &= \sum_{x_j \in V} f_{ij}(d_i,d_j) \;, where \; x_i \leftarrow d_i, \\ & x_j \leftarrow d_j \; in \; vw \end{split}$$





procedure hill_climb

 $\forall d \in D_i$:

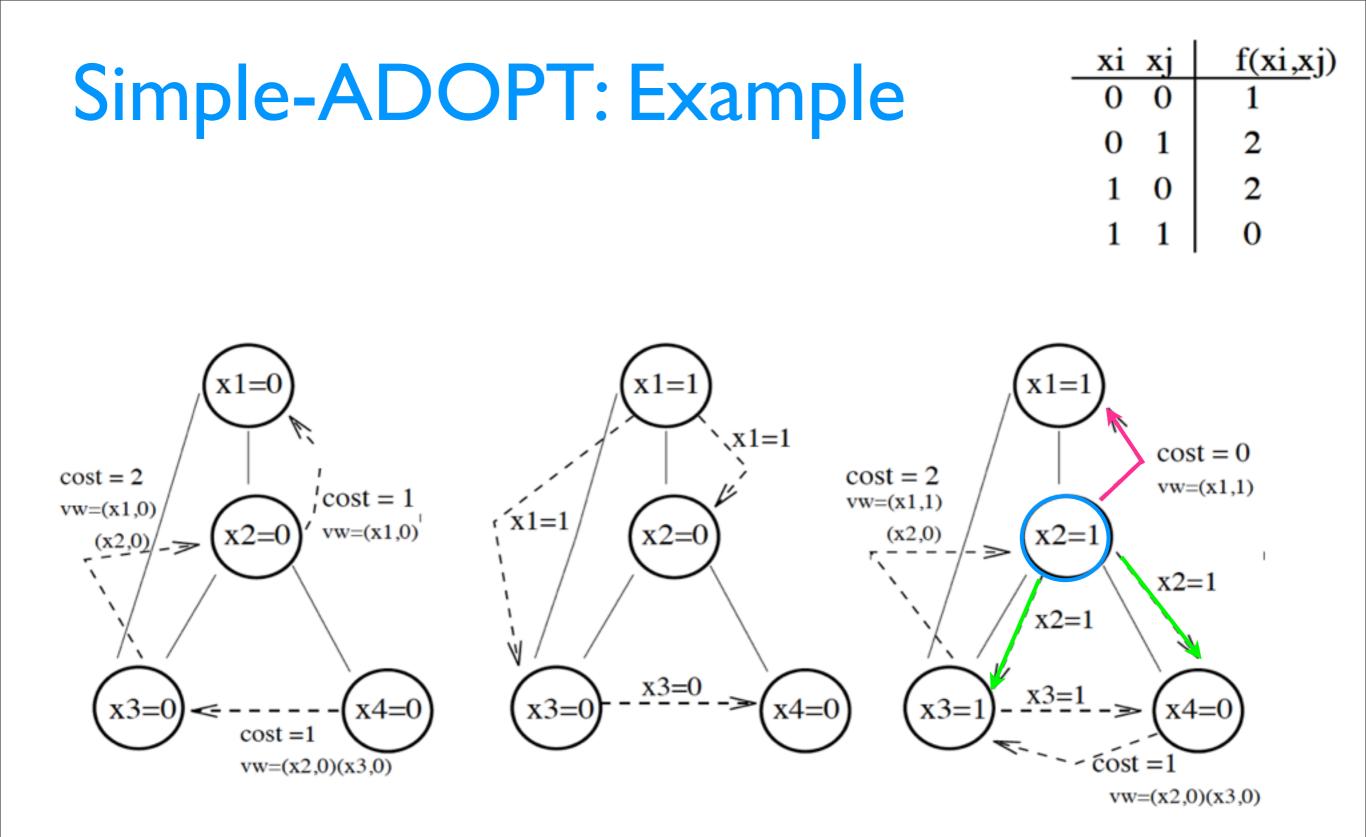
e(d) is x_i 's estimate of cost if it chooses d $e(d) \leftarrow \delta(x_i, Currentvw \cup \{(x_i, d)\}) + c(d)$ choose d that minimizes e(d)

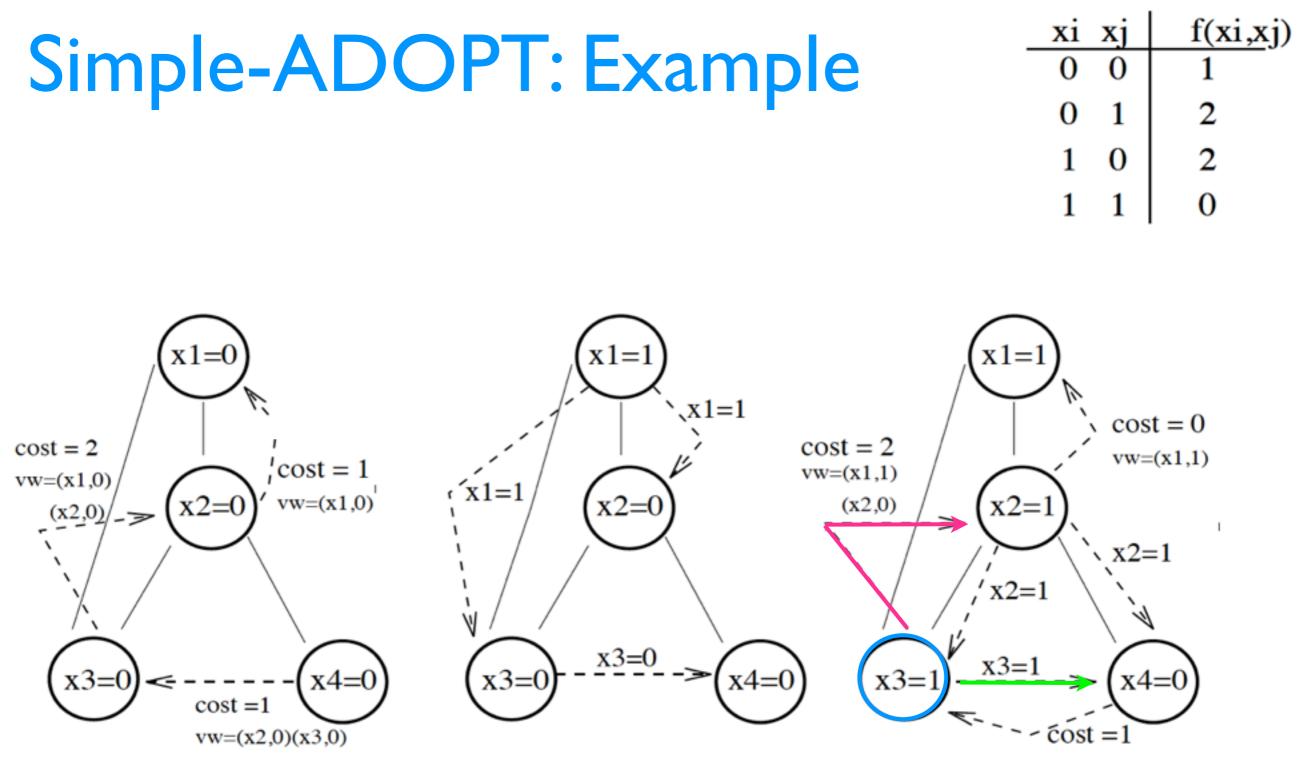
prefer current value d_i for tie;

 $d_i \leftarrow d;$

SEND (VALUE, (x_i, d_i)) to all linked descendents SEND (VIEW, $Currentvw, e(d_i)$) to parent;

$$\begin{split} \delta(x_i,vw) &= \sum_{x_j \in V} f_{ij}(d_i,d_j) \;, where \; x_i \leftarrow d_i, \\ & x_j \leftarrow d_j \; in \; vw \end{split}$$

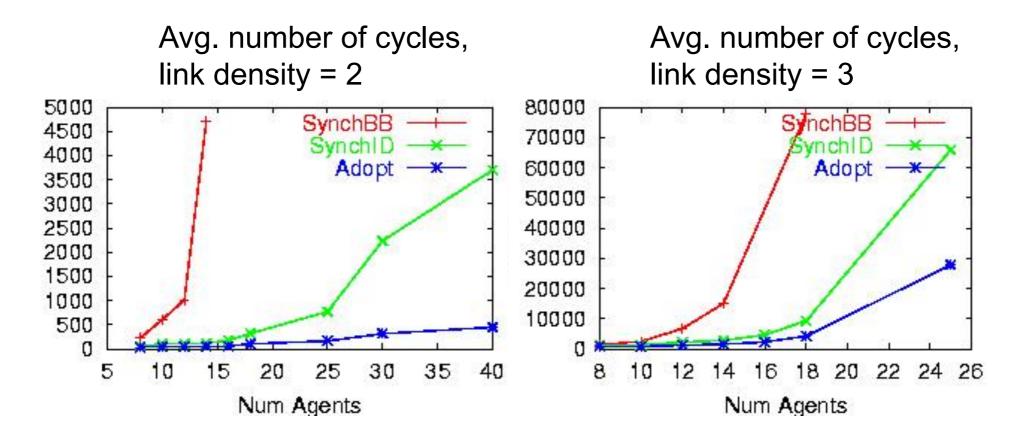




vw=(x2,0)(x3,0)

ADOPT: Properties

- For finite DCOPs with binary non-negative constraints, ADOPT is guaranteed to terminate with the globally optimal solution.
- An ADOPT agent takes the value with minimum cost:
 - Best-first search with eager behavior:
 - Agents may constantly change value
- Graph coloring benchmark:



ADOPT: Key Ideas

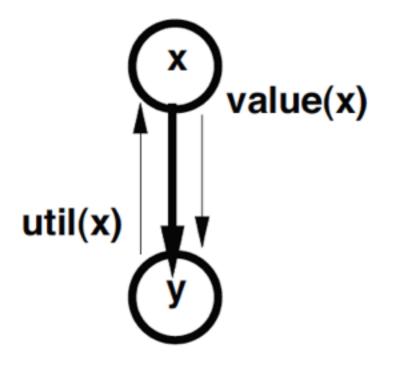
- Optimal, asynchronous algorithm for DCOP
 - polynomial space at each agent
- Weak Backtracking
 - lower bound based search method
 - Parallel search in independent subtrees
- Efficient reconstruction of abandoned solutions
 - backtrack thresholds to control backtracking
- Bounded error approximation
 - sub-optimal solutions faster
 - bound on worst-case performance

- Principle: replace variables by constraints.
- Consider variable x having constraint with y.
- For each value of x, there may be a consistent value of y.
- \Rightarrow replace y by a constraint on x:

x=v is allowed if there is a consistent value of y.

• Optimization version:

utility(x=v) = utility(x=v,y=w); w = best possible value of y given x=v.

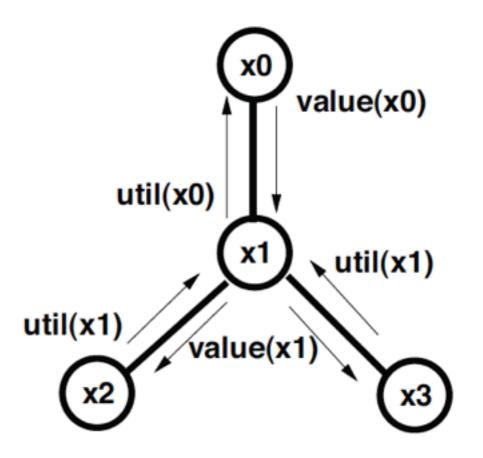


• y sends constraint in util(x) message.

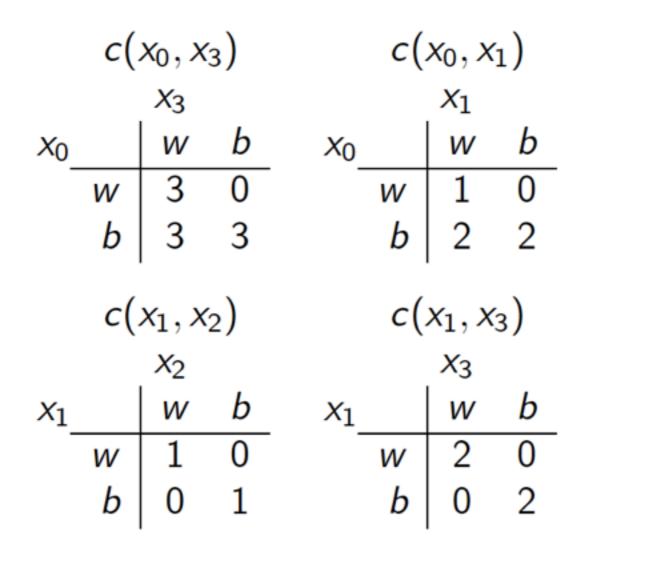
 \Rightarrow x can decide (best) value locally.

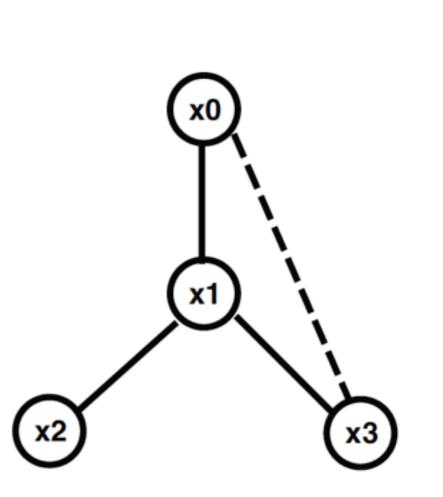
• x informs y of value using value(x) message.

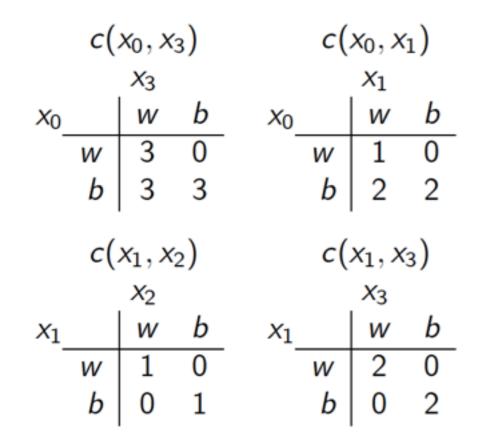
- Rooted tree: every node has at most one parent
- Nodes send UTIL messages to their parents
- Best values of x2, x3 ⇒ unary constraint on x1
- x1 sums up UTIL messages + own constraint ⇒ unary constraint on x0
- x0 picks best value v(x0); sends value(x0=v(x0)) \rightarrow x1
- x1 picks best value given x0 and informs x2,x3

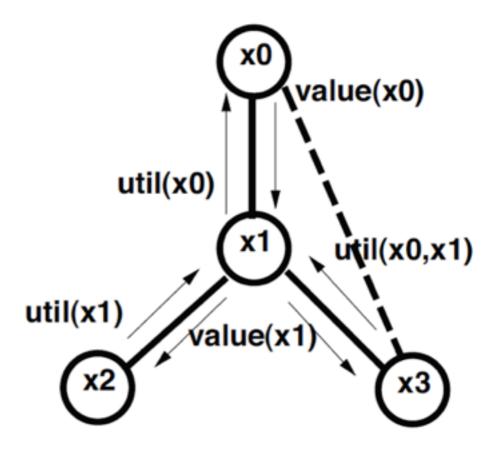


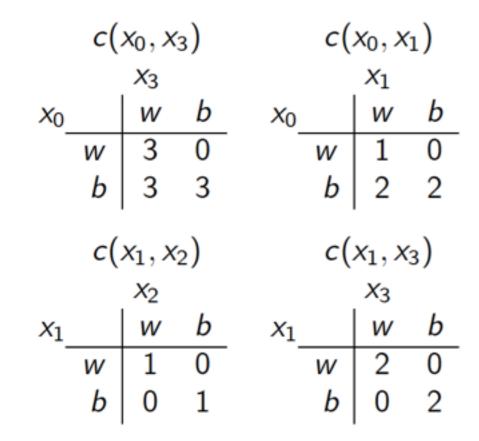
28

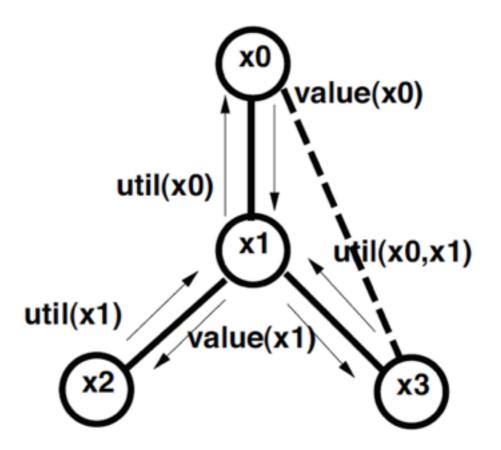




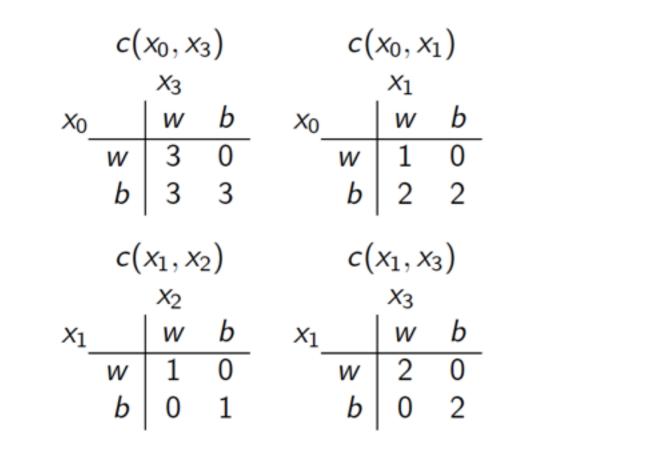


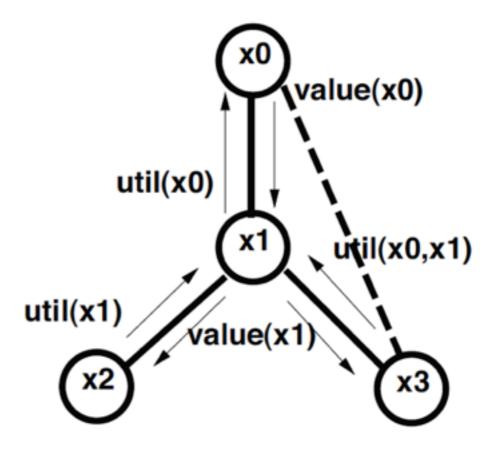




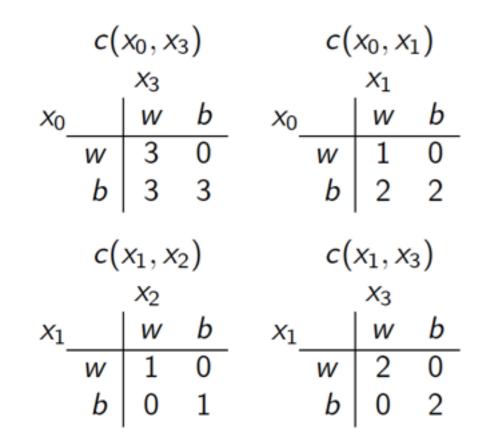


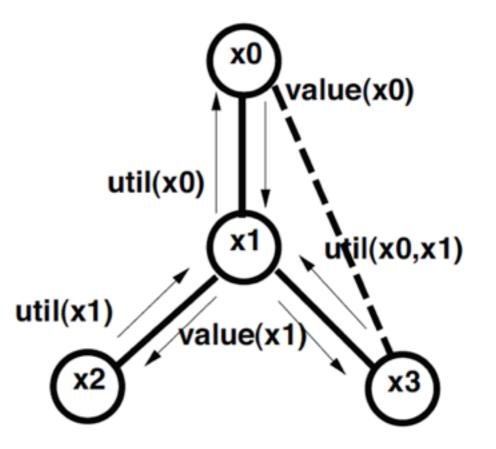
$$UTIL(x_1) = \frac{\begin{array}{c} x_1 \\ w & b \\ \hline 0 & 0 \end{array}}$$



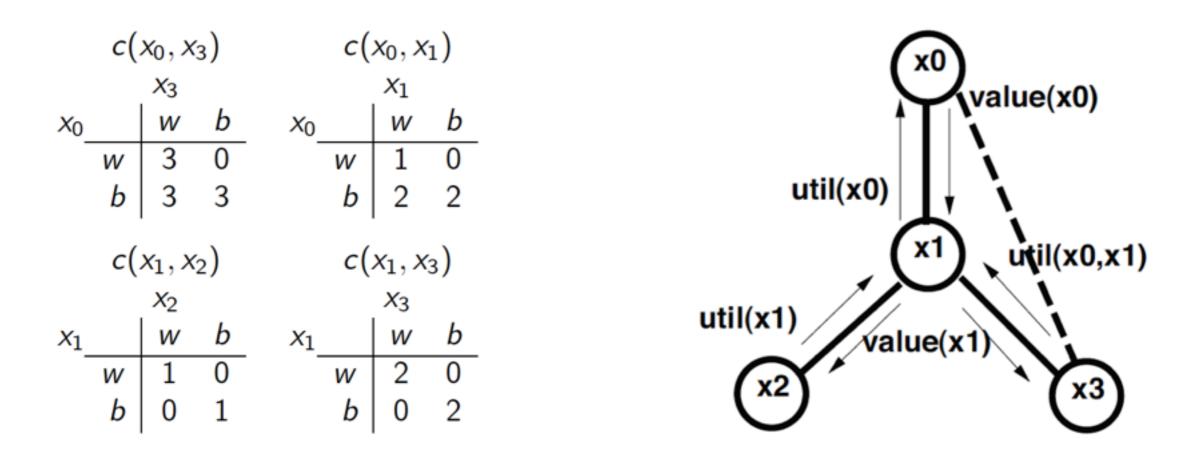


$$UTIL(x_1) = \underbrace{\begin{array}{c} x_1 \\ w & b \\ \hline 0 & 0 \end{array}}_{VTIL(x_0, x_1) = x_0 \underbrace{\begin{array}{c} x_1 \\ w & b \\ \hline w & 0 & 2 \\ b & 3 & 3 \end{array}}$$





$$UTIL(x_1) = \underbrace{\begin{array}{c} x_1 \\ w & b \\ \hline 0 & 0 \end{array}}_{k = 0} UTIL(x_0, x_1) = x_0 \underbrace{\begin{array}{c} x_1 \\ w & b \\ \hline w & 0 & 2 \\ b & 3 & 3 \end{array}}_{k = 0} UTIL(x_0) = \underbrace{\begin{array}{c} x_0 \\ w & b \\ \hline 1 & 3 \end{array}}_{k = 0}$$



$$UTIL(x_1) = \underbrace{\begin{array}{c}x_1\\w & b\\0 & 0\end{array}}_{X_0} UTIL(x_0, x_1) = x_0 \underbrace{\begin{array}{c}x_1\\w & b\\0 & 2\\b & 3 & 3\end{array}}_{b & 3} UTIL(x_0) = \underbrace{\begin{array}{c}x_0\\w & b\\1 & 3\end{array}}_{x_0}$$
$$UTIL(x_0) = \underbrace{\begin{array}{c}x_0\\w & b\\1 & 3\end{array}}_{x_0}$$
$$x_0: w; \text{ send value}(x_0 = w) \to x_1 \quad x_1: w; \text{ send value}(x_0 = w, x_1 = w) \to x_2, x_3$$

34

- Two messages per variable (UTIL and VALUE).
- ⇒ number of messages grows linearly with the size of the problem.
 - However, the maximum message size grows exponentially with the tree-width of the induced graph.
 - In many distributed problems, the tree-width is relatively small.

Distributed local search

- Drawbacks of systematic search:
 - need variable ordering
 - no anytime behavior: have to wait for termination.
 - often (too) costly.
- Sacrifice completeness \Rightarrow local search
 - min-conflicts
 - distibuted min-conflicts
 - breakout algorithm
 - random sampling

Min-conflicts

- Assign random value to each variable in parallel (this will conflict with some constraints).
- At each step, find the change in variable assignment which most reduces the number of conflicts.
- Corresponds to search by "hill-climbing".

Distributed min-conflicts

- Neighbourhood of $N(x_i)$ = variables connected to x_i through constraints.
- Change to x_i can happen asynchronously with others as long as there is no other change in the neighbourhood.
 - \Rightarrow two neighbouring agents are not allowed to change

simultaneously:

- highest improvement wins
- ties broken by fixed ordering
- \Rightarrow parallel, distributed execution.
- also called MGM

Distributed min-conflicts

- Neighbourhood of $N(x_i)$ = variables connected to x_i through constraints.
- Change to x_i can happen asynchronously with others as long as there is no other change in the neighbourhood.
 - \Rightarrow two neighbouring agents are not allowed to change

simultaneously:

- highest improvement wins
- ties broken by fixed ordering
- \Rightarrow parallel, distributed execution.

• CAN GET STUCK IN LOCAL MINIMUM

Distributed min-conflicts

- Neighbourhood of $N(x_i)$ = variables connected to x_i through constraints.
- Change to x_i can happen asynchronously with others as long as there is no other change in the neighbourhood.
 - ⇒ two neighbouring agents are not allowed to change

simultaneously:

- highest improvement wins
- ties broken by fixed ordering
- \Rightarrow parallel, distributed execution.

Definition 2.6 (Quasi-local minimum). An agent x_i is in a quasi-local minimum if it is violating some constraint and neither it nor any of its neighbors can make a change that results in lower total cost for the system.

Breakout Algorithm

- To escape *local minima* the algorithm identifies *quasi-local minima* and increases the cost of the constraint violations
- Similar to min-conflict, but assign dynamic priority to every conflict (constraint), initially =1
- Modify variable which reduces the most the sum of the priority values of all conflicts.
- When local minimum:
 - increase weight of every existing conflict
- Eventually, new conflicts will have lower weight than existing ones
 ⇒ breakout

Breakout Algorithm: Code

Handle-ok? (j, x_j)

- 1 received- $ok[j] \leftarrow \text{true}$
- 2 $agent-view \leftarrow agent-view + (j, x_j)$
- 3 if $\forall_{k \in neighbors}$ received ok[k] = TRUE
- 4 **then** SEND-IMPROVE()

 $\forall_{k \in neighbors} \ received \text{-} ok[k] \leftarrow \text{FALSE}$

send-improve()

- 1 new-value \leftarrow value that gives maximal improvement
- 2 my-improve \leftarrow possible maximal improvement
- 3 $\forall_{k \in neighbors} k. \text{HANDLE-IMPROVE}(i, my-improve, cost)$

HANDLE-IMPROVE(j, improve)

- 1 received- $improve[j] \leftarrow improve$
- 2 if $\forall_{k \in neighbors}$ received-improve $[k] \neq \text{NONE}$
- 3 then SEND-OK

4
$$agent-view \leftarrow \emptyset$$

5

Breakout Algorithm: Code

- 2 my-improve \leftarrow possible maximal improvement
- 3 $\forall_{k \in neighbors} k.$ HANDLE-IMPROVE(i, my-improve, cost)

HANDLE-IMPROVE(j, improve)

- $1 \quad received\text{-}improve[j] \leftarrow improve$
- 2 if $\forall_{k \in neighbors}$ received-improve $[k] \neq \text{NONE}$
- 3 then SEND-OK
- 4 $agent-view \leftarrow \emptyset$
- 5 $\forall_{k \in neighbors} \ received \text{-} improve[k] \leftarrow \text{NONE}$

send-ok()

- 1 if $\forall_{k \in neighbors} my\text{-}improve \geq received\text{-}improve[k]$
- 2 **then** $x_i \leftarrow new$ -value
- 3 if $cost > 0 \land \forall_{k \in neighbors}$ received-improve $[k] \leq 0 \triangleright$ quasi-local optimum
- 4 **then** increase weight of constraint violations
- 5 $\forall_{k \in neighbors} k.$ HANDLE-OK? (i, x_i)

HANDLE-OK? (j, x_j)

- 1 received- $ok[j] \leftarrow \text{TRUE}$
- 2 $agent-view \leftarrow agent-view + (j, x_j)$
- 3 if $\forall_{k \in neighbors}$ received ok[k] = TRUE
- 4 **then** SEND-IMPROVE()
 - $\forall_{k \in neighbors} received-ok[k] \leftarrow FALSE$

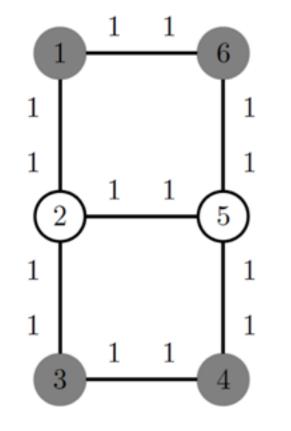
SEND-IMPROVE()

5

- new-value \leftarrow value that gives maximal improvement
- my-improve \leftarrow possible maximal improvement
- 3 $\forall_{k \in neighbors} k$.HANDLE-IMPROVE(i, my-improve, cost

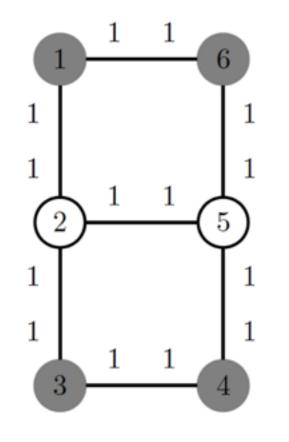
HANDLE-IMPROVE(j, improve)

- 1 received-improve $[j] \leftarrow improve$
- 2 if $\forall_{k \in neighbors}$ received-improve $[k] \neq \text{NONE}$
- 3 then send-ok



43

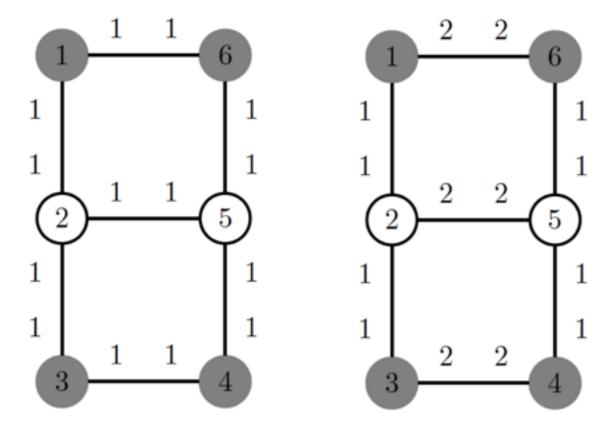
- $1 \quad new-value \leftarrow value that gives maximal improvement$
- 2 my-improve \leftarrow possible maximal improvement
- 3 $\forall_{k \in neighbors} k$.HANDLE-IMPROVE(i, my-improve, cost

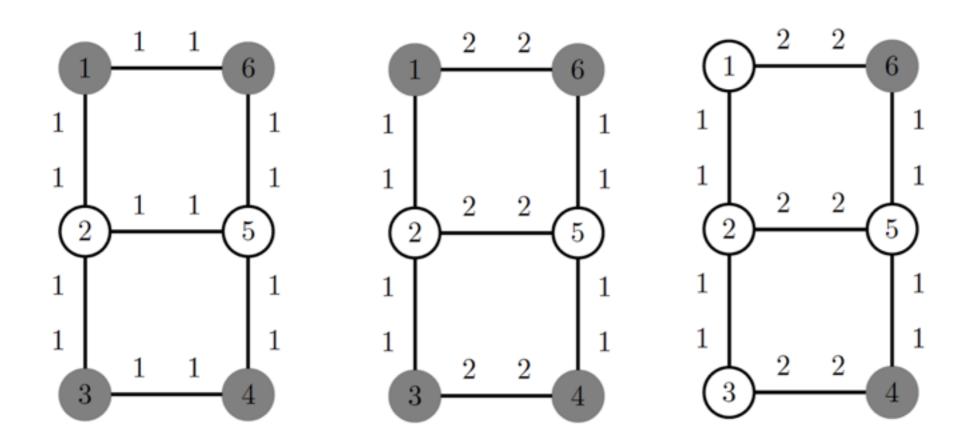


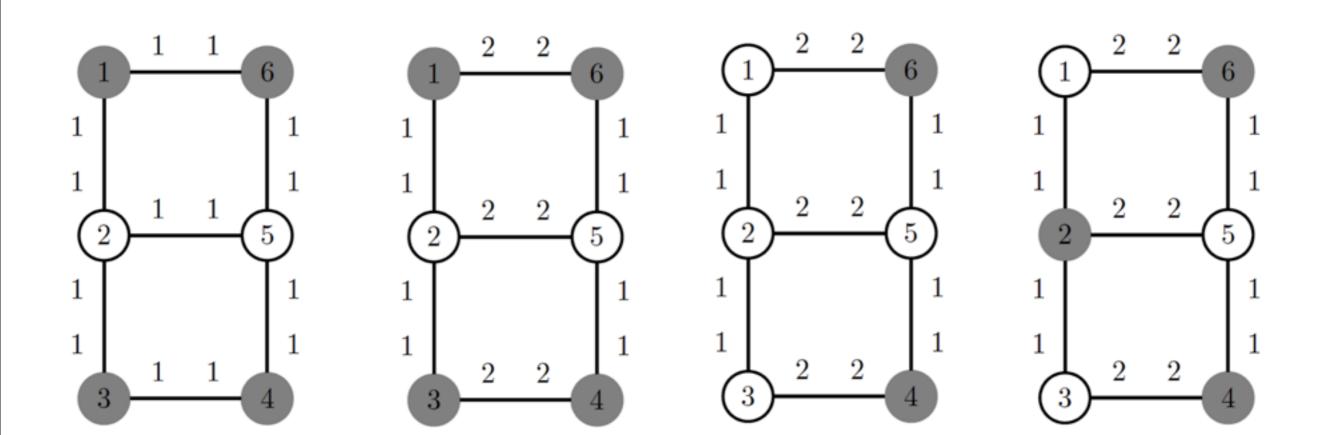
HANDLE-IMPROVE(j, improve)1 received-improve $[j] \leftarrow improve$ 2 if $\forall_{k \in neighbors}$ received-improve $[k] \neq \text{NONE}$ 3 then SEND-OK 4 agent-view $\leftarrow \emptyset$ 5 $\forall_{k \in neighbors}$ received-improve $[k] \leftarrow \text{NONE}$

send-ok()

- **if** $\forall_{k \in neighbors} my\text{-}improve \geq received\text{-}improve[k]$
- 2 **then** $x_i \leftarrow new$ -value
- 3 if $cost > 0 \land \forall_{k \in neighbors} received \text{-} improve[k] \leq 0 \triangleright$
- 4 **then** increase weight of constraint violations
- 5 $\forall_{k \in neighbors} k$.HANDLE-OK? (i, x_i)







Breakout Algorithm: Properties

- Theorem (Distributed Breakout is not Complete)
 - Distributed breakout can get stuck in local minimum. Therefore, there are cases where a solution exists and it cannot find it.