### A4M33MAS - Multiagent Systems Agents and their behaviour modeling by means of formal logic

Michal Pechoucek & Michal Jakob Department of Computer Science Czech Technical University in Prague



This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Selected graphics taken from Valentin Goranko and Wojtek Jamroga: Modal Logics for Multi-Agent Systems, 8th European Summer School in Logic Language and Information

- Multi-agent systems
  - Complex decentralized systems whose behaviour is given by interaction among autonomous, rational entities. We study MAS so that we understand behaviour of such systems and can design such software systems.

- Multi-agent systems
  - Complex decentralized systems whose behaviour is given by interaction among autonomous, rational entities. We study MAS so that we understand behaviour of such systems and can design such software systems.
- Logic
  - Provides a paradigm for modeling and reasoning about the complex world in a precise and exact manner
  - Provides methodology for specification and verification of complex programs

- Multi-agent systems
  - Complex decentralized systems whose behaviour is given by interaction among autonomous, rational entities. We study MAS so that we understand behaviour of such systems and can design such software systems.
- Logic
  - Provides a paradigm for modeling and reasoning about the complex world in a precise and exact manner
  - Provides methodology for specification and verification of complex programs
- Can be used for practical things (also in MAS):
  - automatic verification of multi-agent systems
  - and/or executable specifications of multi-agent systems

### Best logic for MAS?

Modal logic is an extension of classical logic by new connectives  $\Box$  and  $\Diamond$ : necessity and possibility.

 $\blacksquare \Box \varphi \text{ means that } \varphi \text{ is necessarily true} \\ \blacksquare \Diamond \varphi \text{ means that } \varphi \text{ is possibly true} \\ \end{cases}$ 

Independently of the precise definition, the following holds:

 $\mathbf{Q} \boldsymbol{\varphi} \leftrightarrow \neg \mathbf{\Box} \neg \boldsymbol{\varphi}$ 

#### Definition 1.1 (Modal Logic with *n* modalities)

The language of modal logic with n modal operators  $\Box_1, \ldots, \Box_n$  is the smallest set containing:

- atomic propositions  $p, q, r, \ldots$ ;
- for formulae  $\varphi$ , it also contains  $\neg \varphi, \Box_1 \varphi, \ldots, \Box_n \varphi$ ;
- for formulae  $\varphi, \psi$ , it also contains  $\varphi \wedge \psi$ .

We treat  $\lor, \rightarrow, \leftrightarrow, \diamondsuit$  as macros (defined as usual).

#### Definition 1.1 (Modal Logic with *n* modalities)

- The language of modal logic with *n* modal operators  $\Box_1, \ldots, \Box_n$  is the smallest set containing:
  - atomic propositions  $p, q, r, \ldots$ ;
  - for formulae  $\varphi$ , it also contains  $\neg \varphi, \Box_1 \varphi, \ldots, \Box_n \varphi$ ;
  - for formulae  $\varphi, \psi$ , it also contains  $\varphi \wedge \psi$ .

We treat  $\lor, \rightarrow, \leftrightarrow, \diamondsuit$  as macros (defined as usual).

Note that the modal operators can be nested:

 $(\Box_1 \Box_2 \diamond_1 p) \vee \Box_3 \neg p$ 

More precisely, necessity/possibility is interpreted as follows:

*p* is necessary ⇔ *p* is true in all possible scenarios
*p* is possible ⇔ *p* is true in at least one possible scenario

#### $\leadsto$ possible worlds semantics

0

#### Definition 1.2 (Kripke Structure)

A Kripke structure is a tuple  $\langle \mathcal{W}, \mathcal{R} \rangle$ , where  $\mathcal{W}$  is a set of possible worlds, and  $\mathcal{R}$  is a binary relation on worlds, called accessibility relation.

#### Definition 1.3 (Kripke model)

A possible worlds model  $\mathcal{M} = \langle \mathcal{S}, \pi \rangle$  consists of a Kripke structure  $\mathcal{S}$ , and a valuation of propositions  $\pi : \mathcal{W} \to \mathcal{P}(\{p, q, r, \ldots\}).$ 

Remarks:

- R indicates which worlds are relevant for each other; w<sub>1</sub>Rw<sub>2</sub> can be read as "world w<sub>2</sub> is relevant for (reachable from) world w<sub>1</sub>"
- R can be any binary relation from W × W; we do not require any specific properties (yet).

#### Definition 1.4 (Semantics of modal logic)

The truth of formulae is relative to a Kripke model  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \pi \rangle$ , and a world  $w \in \mathcal{W}$ . It can be defined through the following clauses:



0



run → **◊**stop

0



 $run \rightarrow \diamondsuit stop$ stop  $\rightarrow \Box stop$ 



 $run → \diamondsuit stop$  $stop → \Box stop$  $run → \diamondsuit \Box stop$ 



- Note:
  - -most modal logics can be translated to classical logic
    - ... but the result looks horribly ugly,
    - ... and in most cases it is much harder to automatize anything

#### Definition 1.5 (System K)

System **K** is an extension of the propositional calculus by the axiom **Distribution** axiom

 $\mathsf{K} \ (\Box \varphi \land \Box (\varphi \to \psi)) \to \Box \psi$ 

and the inference rule

Generalization axiom  $\frac{\varphi}{\Box \omega}$ .



Theorem 1.6 (Soundness/completeness of system K)

System **K** is sound and complete with respect to the class of all Kripke models.

#### Definition 1.7 (Extending K with axioms D, T, 4, 5)

System **K** is often extended by (a subset of) the following axioms (called as below for historical reasons):

- T:  $\Box \varphi \rightarrow \varphi$
- D:  $\Box \varphi \rightarrow \diamondsuit \varphi$
- 4:  $\Box \varphi \rightarrow \Box \Box \varphi$
- B:  $\varphi \to \Box \diamondsuit \varphi$
- 5:  $\Diamond \varphi \rightarrow \Box \Diamond \varphi$

**1**/

 $\mathsf{T}: \mathsf{because} \models \varphi \Rightarrow \Box \varphi \mathsf{ and due reflexivity } \forall w : (w,w) \in R \circledcirc$ 



 $\mathsf{T} \colon \mathsf{because} \models \varphi \Rightarrow \Box \varphi \text{ and due } \underline{\mathsf{reflexivity}} \; \forall w : (w,w) \in R \circledcirc$ 

D:  $(\mathcal{M}_1 \models_w \varphi \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$  and due to seriality  $(\mathcal{M}_1 \models_w (\exists w' : (w, w') \in R))$ we can say that  $\mathcal{M}_1 \models_w \exists w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w'} \varphi)$ 

D:  $\Box \varphi \rightarrow \Diamond \varphi$ 

 $\mathsf{T} \colon \mathsf{because} \models \varphi \Rightarrow \Box \varphi \text{ and due } \underline{\mathsf{reflexivity}} \; \forall w : (w, w) \in R \circledcirc$ 

D:  $(\mathcal{M}_1 \models_w \varphi \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$  and due to seriality  $(\mathcal{M}_1 \models_w (\exists w' : (w, w') \in R))$ we can say that  $\mathcal{M}_1 \models_w \exists w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w'} \varphi)$ 

4: provided that there is <u>transitive</u> relation on R we may say that  $(\mathcal{M}_1 \models_w \varphi \ \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi) \Rightarrow (\mathcal{M}_1 \models_w \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} (\forall w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi)) \otimes$ 

$$4: \ \Box \varphi \to \Box \Box \varphi$$

 $\mathsf{T} \colon \mathsf{because} \models \varphi \Rightarrow \Box \varphi \text{ and due } \underline{\mathsf{reflexivity}} \; \forall w : (w,w) \in R \circledcirc$ 

D:  $(\mathcal{M}_1 \models_w \varphi \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$  and due to seriality  $(\mathcal{M}_1 \models_w (\exists w' : (w, w') \in R))$ we can say that  $\mathcal{M}_1 \models_w \exists w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w'} \varphi)$ 

4: provided that there is <u>transitive</u> relation on R we may say that  $(\mathcal{M}_1 \models_w \varphi \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi) \Rightarrow (\mathcal{M}_1 \models_w \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} (\forall w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi)) \otimes$ 

B: provided that there is symmetric relation on R we say that  $\mathcal{M}_1 \models_w \varphi \Rightarrow \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \exists w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi$  if  $(\forall w, w', (w, w') \in R \Rightarrow (w', w) \in R)$  then w = w'' and  $\mathcal{M}_1 \models_w \varphi \circledcirc$ 

$$\mathsf{B}: \varphi \to \Box \diamondsuit \varphi$$

 $\mathsf{T} \colon \mathsf{because} \models \varphi \Rightarrow \Box \varphi \text{ and due } \underline{\mathsf{reflexivity}} \; \forall w : (w,w) \in R \circledcirc$ 

D:  $(\mathcal{M}_1 \models_w \varphi \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$  and due to seriality  $(\mathcal{M}_1 \models_w (\exists w' : (w, w') \in R))$ we can say that  $\mathcal{M}_1 \models_w \exists w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w'} \varphi)$ 

4: provided that there is <u>transitive</u> relation on R we may say that  $(\mathcal{M}_1 \models_w \varphi \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \varphi) \Rightarrow (\mathcal{M}_1 \models_w \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} (\forall w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi)) \otimes$ 

B: provided that there is symmetric relation on R we say that  $\mathcal{M}_1 \models_w \varphi \Rightarrow \forall w' : (w, w') \in R : \mathcal{M}_1 \models_{w'} \exists w'' : (w', w'') \in R : \mathcal{M}_1 \models_{w''} \varphi$  if  $(\forall w, w', (w, w') \in R \Rightarrow (w', w) \in R)$  then w = w'' and  $\mathcal{M}_1 \models_w \varphi \circledcirc$ 

5:  $(\mathcal{M}_1 \models_w \exists w' : (w, w') \in R \models_{w'} \varphi) \Rightarrow (\mathcal{M}_1 \models_w \forall w'' : (w, w'') \in R : \mathcal{M}_1 \models_{w''} \exists w'(w'', w') \in R : \mathcal{M}_1 \models_{w'} \varphi)$  due to <u>euclidean</u> property if  $(w, w') \in R \land (w, w'') \in R$  then  $(w', w'') \in R \odot R \odot$ 

5: 
$$\Diamond \varphi \to \Box \Diamond \varphi$$

- $\bullet \ \mathsf{T} \colon \Box \varphi \to \varphi$
- D:  $\Box \varphi \rightarrow \diamondsuit \varphi$
- 4:  $\Box \varphi \rightarrow \Box \Box \varphi$
- B:  $\varphi \to \Box \diamondsuit \varphi$
- 5:  $\Diamond \varphi \rightarrow \Box \Diamond \varphi$

- due to reflexivity
- due to seriality
- due to transitivity
- due to symetricity
- due to euclidean property

 Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:

- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms

- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms
  - an agent knows what it does know: positive introspection axiom (4 axiom).

- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms
  - an agent knows what it does know: positive introspection axiom (4 axiom).
  - an agent knows what it does not know: positive introspection axiom (5 axiom).

#### Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:

- to satisfy the K axioms
- an agent knows what it does know: positive introspection axiom (4 axiom).
- an agent knows what it does not know: positive introspection axiom (5 axiom).
- it beliefs are not contradictory: if it knows something it means it does not allow the negation of its being true (D axiom).

#### Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:

- to satisfy the K axioms
- an agent knows what it does know: positive introspection axiom (4 axiom).
- an agent knows what it does not know: positive introspection axiom (5 axiom).
- it beliefs are not contradictory: if it knows something it means it does not allow the negation of its being true (D axiom).

- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms
  - an agent knows what it does know: positive introspection axiom (4 axiom).
  - an agent knows what it does not know: positive introspection axiom (5 axiom).
  - it beliefs are not contradictory: if it knows something it means it does not allow the negation of its being true (D axiom).
- Belief is surely a <u>KD45</u> system -- modal logic system where the B relation is serial, transitive and euclidean.
- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms
  - an agent knows what it does know: positive introspection axiom (4 axiom).
  - an agent knows what it does not know: positive introspection axiom (5 axiom).
  - it beliefs are not contradictory: if it knows something it means it does not allow the negation of its being true (D axiom).
- Belief is surely a <u>KD45</u> system -- modal logic system where the B relation is serial, transitive and euclidean.

- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms
  - an agent knows what it does know: positive introspection axiom (4 axiom).
  - an agent knows what it does not know: positive introspection axiom (5 axiom).
  - it beliefs are not contradictory: if it knows something it means it does not allow the negation of its being true (D axiom).
- Belief is surely a <u>KD45</u> system -- modal logic system where the B relation is serial, transitive and euclidean.
- <u>Knowledge</u> is more difficult it needs to be also true this why the knowledge accessibility relation needs to be also reflexive.

- Once we are implementing an intelligent agent what do we want the program to implement e.g. its <u>beliefs</u>:
  - to satisfy the K axioms
  - an agent knows what it does know: positive introspection axiom (4 axiom).
  - an agent knows what it does not know: positive introspection axiom (5 axiom).
  - it beliefs are not contradictory: if it knows something it means it does not allow the negation of its being true (D axiom).
- Belief is surely a <u>KD45</u> system -- modal logic system where the B relation is serial, transitive and euclidean.
- Knowledge is more difficult it needs to be also true this why the knowledge accessibility relation needs to be also reflexive.
- Therefore knowledge is a <u>KTD45</u> system.

- $\varphi$  can be true in  $\mathcal{M}$  and q ( $\mathcal{M}, q \models \varphi$ )
- $\varphi$  can be valid in  $\mathcal{M}(\mathcal{M},q \models \varphi \text{ for all } q)$
- $\varphi$  can be valid  $(\mathcal{M}, q \models \varphi$  for all  $\mathcal{M}, q)$
- $\varphi$  can be satisfiable  $(\mathcal{M}, q \models \varphi$  for some  $\mathcal{M}, q)$
- \varphi can be a theorem (it can be derived from the axioms via inference rules)

- model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"
- model checking (global): "given  $\mathcal{M}$  and  $\varphi$ , what is the set of states in which  $\varphi$  is true?"
- Model checking is a technique for automatically verifying correctness properties of finite-state systems. Given a model of a system, exhaustively and automatically check whether this model meets a given specification (such as the absence of deadlocks and similar critical states that can cause the system to crash).

- model checking (local): "given *M*, *q*, and *\varphi*, is *\varphi* true in *M*, *q*?"
- model checking (global): "given  $\mathcal{M}$  and  $\varphi$ , what is the set of states in which  $\varphi$  is true?"
- **satisfiability**: "given  $\varphi$ , is  $\varphi$  true in at least one model and state?"
- validity: "given  $\varphi$ , is  $\varphi$  true in all models and their states?"
- theorem proving: "given  $\varphi$ , is it possible to prove (derive)  $\varphi$ ?"

Modal logic is a generic framework.

Various modal logics:

- knowledge ~> epistemic logic,
- beliefs ~→ doxastic logic,
- obligations ~> deontic logic,
- actions ~> dynamic logic,
- time ~→ temporal logic,
- ability ~> strategic logic,
- and combinations of the above

### Model of Time

 Modeling time as an instance of modal logic where the accessibility relation represents the relationship between the past, current and future time moments.



# Typical Temporal Operators

 $\varphi$  is true in the next moment in time  $\varphi$  is true in all future moments  $\varphi$  is true in some future moment  $\varphi$  is true until the moment when  $\psi$  becomes true

 $\mathcal{X} \varphi$ 

 $\mathcal{G}\varphi$ 

# Typical Temporal Operators

| $\mathcal{X}arphi$       | arphi is true in the <code>next</code> moment in time |
|--------------------------|-------------------------------------------------------|
| $\mathcal{G} arphi$      | arphi is true in all future moments                   |
| $\mathcal{F}arphi$       | arphi is true in some future moment                   |
| $arphi \mathcal{U} \psi$ | $arphi$ is true until the moment when $\psi$ be-      |
|                          | comes true                                            |

 $\begin{aligned} \mathcal{G}((\neg \mathsf{passport} \lor \neg \mathsf{ticket}) & \to & \mathcal{X} \neg \mathsf{board\_flight}) \\ & \mathsf{send}(\mathsf{msg},\mathsf{rcvr}) & \to & \mathcal{F}\mathsf{receive}(\mathsf{msg},\mathsf{rcvr}) \end{aligned}$ 

something bad will not happen
something good will always hold

-something bad will not happen

- -something good will always hold
- Typical examples:
  - $\mathcal{G}\neg \mathsf{bankrupt}$

-something bad will not happen

- -something good will always hold
- Typical examples

 $\mathcal{G}$ ¬bankrupt  $\mathcal{G}$ (fuelOK  $\lor \mathcal{X}$ fuelOK) and so on ...

-something bad will not happen

- -something good will always hold
- Typical examples

 $\mathcal{G}$ ¬bankrupt  $\mathcal{G}(fuelOK \lor \mathcal{X}fuelOK)$ and so on . . .

Usually:  $\mathcal{G}\neg$ ....

-something good will happen

-something good will happen

- Typical examples
  - ${\cal F}$ rich

-something good will happen

• Typical examples

 ${\mathcal F}{\mathsf{rich}}$  rocketLondon  $\to {\mathcal F}{\mathsf{rocketParis}}$  and so on  $\ldots$ 

-something good will happen

• Typical examples

 $\mathcal{F}$ rich rocketLondon  $\rightarrow \mathcal{F}$ rocketParis and so on . . .

Usually:  $\mathcal{F}$ ....

## Fairness Property

- Useful when scheduling processes, responding to messages, etc.
- Good for specifying interaction properties of the environment
- Typical examples:  $\mathcal{G}(\mathsf{rocketLondon} \to \mathcal{F}\mathsf{rocketParis})$
- Strong Fairness: if something is attempted/requested, then it will be successful
- Typical examples:

 $\mathcal{G}(\mathsf{attempt} \to \mathcal{F}\mathsf{success})$  $\mathcal{GF}\mathsf{attempt} \to \mathcal{GF}\mathsf{success}$ 

## Linear Temporal Logic - LTL

 Reasoning about a particular computation of a system where time is linear - just one possible future path is included.

#### Definition 3.4 (Models of LTL)

A model of LTL is a sequence of time moments. We call such models paths, and denote them by  $\lambda.$ 

Evaluation of atomic propositions at particular time moments is also needed.

Notation:

- $\lambda[i]$ : *i*th time moment
- $\lambda[i \dots j]$ : all time moments between *i* and *j*
- $\lambda[i \dots \infty]$ : all timepoints from *i* on

## Linear Temporal Logic - LTL

#### Definition 3.5 (Semantics of LTL)

| $\lambda \models p$                         | iff <i>p</i> is true at moment λ[0];                         |
|---------------------------------------------|--------------------------------------------------------------|
| $\lambda \models \mathcal{X} \varphi$       | iff $\lambda[1\infty] \models \varphi$ ;                     |
| $\lambda \models \mathcal{F}\varphi$        | iff $\lambda[i\infty] \models \varphi$ for some $i \ge 0$ ;  |
| $\lambda \models \mathcal{G}\varphi$        | iff $\lambda[i\infty] \models \varphi$ for all $i \ge 0$ ;   |
| $\lambda \models \varphi  \mathcal{U} \psi$ | iff $\lambda[i\infty] \models \psi$ for some $i \ge 0$ , and |
|                                             | $\lambda[j\infty] \models \varphi$ for all $0 \le j \le i$ . |

## Linear Temporal Logic - LTL

#### Definition 3.5 (Semantics of LTL)

| $\lambda \models p$                         | iff <i>p</i> is true at moment λ[0];                         |
|---------------------------------------------|--------------------------------------------------------------|
| $\lambda \models \mathcal{X} \varphi$       | iff $\lambda[1\infty] \models \varphi$ ;                     |
| $\lambda \models \mathcal{F}\varphi$        | iff $\lambda[i\infty] \models \varphi$ for some $i \ge 0$ ;  |
| $\lambda \models \mathcal{G}\varphi$        | iff $\lambda[i\infty] \models \varphi$ for all $i \ge 0$ ;   |
| $\lambda \models \varphi  \mathcal{U} \psi$ | iff $\lambda[i\infty] \models \psi$ for some $i \ge 0$ , and |
|                                             | $\lambda[j\infty] \models \varphi$ for all $0 \le j \le i$ . |

Note that:

$$\begin{aligned} \mathcal{G}\varphi &\equiv \neg \mathcal{F} \neg \varphi \\ \mathcal{F}\varphi &\equiv \neg \mathcal{G} \neg \varphi \\ \mathcal{F}\varphi &\equiv \top \mathcal{U}\varphi \end{aligned}$$

- Reasoning about possible computations of a system. Time is branching -- we want all alternative paths included.
- Path quantifiers: A (for all paths), E (there is a path);
- Temporal operators:  $\mathcal{X}$  (nexttime),  $\mathcal{F}$  (sometime),  $\mathcal{G}$  (always) and  $\mathcal{U}$  (until);

- Reasoning about possible computations of a system. Time is branching -- we want all alternative paths included.
- Path quantifiers: A (for all paths), E (there is a path);
- Temporal operators:  $\mathcal{X}$  (nexttime),  $\mathcal{F}$  (sometime),  $\mathcal{G}$  (always) and  $\mathcal{U}$  (until);
- Vanilla CTL: every temporal operator must be immediately preceded by exactly one path quantier
- CTL\*: no syntactic restrictions
- Reasoning in Vanilla CTL can be automatized.

#### Definition 3.8 (Semantics of CTL\*: state formulae)

 $\begin{array}{l} M,q\models \mathbf{E}\varphi & \text{iff there is a path }\lambda\text{, starting from }q\text{,}\\ & \text{such that }M,\lambda\models\varphi\text{;}\\ M,q\models \mathbf{A}\varphi & \text{iff for all paths }\lambda\text{, starting from }q\text{, we}\\ & \text{have }M,\lambda\models\varphi\text{.} \end{array}$ 

Definition 3.8 (Semantics of CTL\*: state formulae)

 $M, q \models \mathbf{E}\varphi$  iff there is a path  $\lambda$ , starting from q, such that  $M, \lambda \models \varphi$ ;  $M, q \models \mathbf{A}\varphi$  iff for all paths  $\lambda$ , starting from q, we have  $M, \lambda \models \varphi$ .

Definition 3.9 (Semantics of CTL\*: path formulae) Exactly like for LTL!

#### Definition 3.8 (Semantics of CTL\*: state formulae)

$$M, q \models \mathbf{E}\varphi$$
 iff there is a path  $\lambda$ , starting from  $q$ ,  
such that  $M, \lambda \models \varphi$ ;  
 $M, q \models \mathbf{A}\varphi$  iff for all paths  $\lambda$ , starting from  $q$ , we  
have  $M, \lambda \models \varphi$ .

#### Definition 3.9 (Semantics of CTL\*: path formulae)

 $\begin{array}{ll} M,\lambda \models \mathcal{X}\varphi & \text{iff } M,\lambda[1...\infty] \models \varphi; \\ M,\lambda \models \varphi \mathcal{U}\psi & \text{iff } M,\lambda[i...\infty] \models \psi \text{ for some } i \geq 0, \\ & \text{and } M,\lambda[j...\infty] \models \varphi \text{ for all } 0 \leq j \leq \\ & i. \end{array}$ 



48





**1**<sup>st</sup> idea: Consider actions or programs  $\alpha$ . Each such  $\alpha$  defines a transition (accessibility relation) from worlds into worlds.

0

**1**<sup>st</sup> idea: Consider actions or programs  $\alpha$ . Each such  $\alpha$  defines a transition (accessibility relation) from worlds into worlds.

2<sup>nd</sup> idea: We need statements about the outcome of actions:

- $\label{eq:alpha} \left[ \alpha \right] \! \varphi \text{: ``after every execution of } \alpha \text{,} \\ \varphi \text{ holds,} \end{aligned}$

**1**<sup>st</sup> idea: Consider actions or programs  $\alpha$ . Each such  $\alpha$  defines a transition (accessibility relation) from worlds into worlds.

- 2<sup>nd</sup> idea: We need statements about the outcome of actions:

As usual,  $\langle \alpha \rangle \varphi \equiv \neg [\alpha] \neg \varphi$ .

**3**<sup>rd</sup> **idea:** Programs/actions can be combined (sequentially, nondeterministically, iteratively), e.g.:

### $[\alpha;\beta]\varphi$

would mean "after every execution of  $\alpha$  and then  $\beta$ , formula  $\varphi$  holds".

Definition 3.1 (Labelled Transition System)

A labelled transition system is a pair

$$\langle St, \{ \xrightarrow{\alpha} : \alpha \in \mathbf{L} \} \rangle$$

where *St* is a non-empty set of states and **L** is a non-empty set of labels and for each  $\alpha \in \mathbf{L}$ :  $\xrightarrow{\alpha} \subseteq St \times St$ .

Definition 3.1 (Labelled Transition System)

A labelled transition system is a pair

$$\langle St, \{\stackrel{\alpha}{\longrightarrow}: \alpha \in \mathbf{L}\} \rangle$$

where *St* is a non-empty set of states and **L** is a non-empty set of labels and for each  $\alpha \in \mathbf{L}$ :  $\xrightarrow{\alpha} \subseteq St \times St$ .

#### Definition 3.2 (Dynamic Logic: Models)

A model of propositional dynamic logic is given by a labelled transition systems and an evaluation of propositions.



# 0

#### Definition 3.2 (Dynamic Logic: Models)

A model of propositional dynamic logic is given by a labelled transition systems and an evaluation of propositions.

#### Definition 3.3 (Semantics of DL)

 $\mathcal{M}, s \models [\alpha] \varphi$  iff for every t such that  $s \stackrel{\alpha}{\longrightarrow} t$ , we have  $\mathcal{M}, t \models \varphi$ .








start  $\rightarrow \langle try \rangle$ halt

58





start 
$$\rightarrow \langle try \rangle$$
halt  
start  $\rightarrow \neg [try]$ halt





start 
$$\rightarrow \langle try \rangle$$
 halt  
start  $\rightarrow \neg [try]$  halt  
start  $\rightarrow \langle try \rangle [wait]$  halt

60

## **Concluding Remarks**

- Practical Importance of Temporal and Dynamic Logics:
  - -Automatic verication in principle possible (model checking).
  - -Can be used for automated planning.
  - -Executable specications can be used for programming.
- Note:

When we combine time and actions with knowledge (beliefs, desires, intentions, obligations...), we finally obtain a fairly realistic model of MAS.