

Auctions

<u>Michal Jakob</u> <u>Agent Technology Center</u>, Dept. of Computer Science and Engineering, FEE, Czech Technical University

AE4M36MAS Autumn 2014 - Lecture 12

Where are We?

Agent architectures (inc. BDI architecture) Logics for MAS Non-cooperative game theory Cooperative game theory Resource allocation and Auctions

Social choice

Distributed constraint reasoning

Lecture Online [TODO]

Introduction

Resource Allocation

- Type of resources
- Preference representation
- Social Welfare

Auction Mechanisms

- Basic Definitions
- Single-good auction mechanisms
- Analysis of auction mechanisms

What is an Auction?

An **auction** is a protocol that allows agents (=bidders) to indicate their **interests** in one or more **resources** and that uses these indications of interest to determine both an **allocation** of resources and a set of **payments** by the agents. [Shoham & Leyton-Brown 2009] **Market-based price** setting: for objects of unknown value, the value is dynamically assessed by the market!

Flexible: any object type can be allocated

Can be **automated**

- use of simple rules reduces complexity of negotiations
- well-suited for computer implementation

Revenue-maximising and efficient allocations are achievable

Basic Single-Item Auction Mechanisms

English

Japanese

Dutch

First-Price

Second-Price

Analysing Auctions

Are there fundamental similarities / differences between mechanisms described?

Mechanism Design: A Very Brief Intro

Bayesian Game

Definition (Bayesian game setting)

A Bayesian game setting is a tuple (N, O, Θ, p, u) , where

- N is a finite set of n agents;
- O is a set of outcomes;
- $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is a set of possible joint type vectors;
- p is a (common prior) probability distribution on $\Theta;$ and
- $u = (u_1, \ldots, u_n)$, where $u_i : O \times \Theta \mapsto \mathbb{R}$ is the utility function for each player *i*.

Mechanism

Definition (Mechanism)

A mechanism (for a Bayesian game setting (N, O, Θ, p, u)) is a pair (A, M), where

- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$; and
- $M: A \mapsto \Pi(O)$ maps each action profile to a distribution over outcomes.

Implementation

Definition (Implementation in dominant strategies)

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M) is an implementation in dominant strategies of a social choice function C (over N and O) if for any vector of utility functions u, the game has an equilibrium in dominant strategies, and in any such equilibrium a^* we have $M(a^*) = C(u)$.

Definition (Bayes–Nash implementation)

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M) is an implementation in Bayes–Nash equilibrium of a social choice function C (over N and O) if there exists a Bayes–Nash equilibrium of the game of incomplete information (N, A, Θ, p, u) such that for every $\theta \in \Theta$ and every action profile $a \in A$ that can arise given type profile θ in this equilibrium, we have that $M(a) = C(u(\cdot, \theta))$.

Quasilinear Preferences

Definition (Quasilinear preferences)

Agents have quasilinear preferences in an *n*-player Bayesian game when the set of outcomes is

 $O = X \times \mathbb{R}^n$

for a finite set X, and the utility of an agent i given joint type θ is given by

$$u_i(o,\theta) = u_i(x,\theta) - p_i,$$

where o = (x, p) is an element of O, $u_i : X \times \Theta \mapsto \mathbb{R}$ is an arbitrary function.

Definition (Quasilinear mechanism)

A mechanism in the quasilinear setting (for a Bayesian game setting $(N, O = X \times \mathbb{R}^n, \Theta, p, u)$) is a triple (A, χ, p) , where

- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$,
- $\chi: A \mapsto \Pi(X)$ maps each action profile to a distribution over choices, and
- $p: A \mapsto \mathbb{R}^n$ maps each action profile to a payment for each agent.

Definition (Direct quasilinear mechanism)

A direct quasilinear mechanism (for a Bayesian game setting $(N, O = X \times \mathbb{R}^n, \Theta, p, u)$) is a pair (χ, p) . It defines a standard mechanism in the quasilinear setting, where for each i, $A_i = \Theta_i$.

Quasilinear Mechanisms with Conditional Utility Independence

Definition (Conditional utility independence)

A Bayesian game exhibits conditional utility independence if for all agents $i \in N$, for all outcomes $o \in O$ and for all pairs of joint types θ and $\theta' \in \Theta$ for which $\theta_i = \theta'_i$, it holds that $u_i(o, \theta) = u_i(o, \theta')$.

Given conditional utility independence, we can write *i*'s utility $u_i(o, \theta)$ function as $u_i(o, \theta_i)$

An agent's valuation for choice $x \in X$: $v_i(x) = u_i(x, \theta_i)$

the maximum amount i would be willing to pay to get x

Alternative definition of direct mechanism:

- ask agents *i* to declare $v_i(x)$ for each $x \in X$
- define \hat{v}_i as the valuation that agent i declares to such a direct mechanism
- also define tuples \hat{v} and \hat{v}_{-i}

Direct Mechanism Redefined

Alternative definition of direct mechanism:

- ask agents *i* to declare $v_i(x)$ for each $x \in X$
- define \hat{v}_i as the valuation that agent i declares to such a direct mechanism
- also define tuples \hat{v} and \hat{v}_{-i}

Mechanism Properties

Definition (Truthfulness)

A quasilinear mechanism is truthful if it is direct and $\forall i \forall v_i$, agent i's equilibrium strategy is to adopt the strategy $\hat{v}_i = v_i$.

Definition (Efficiency)

A quasilinear mechanism is strictly Pareto efficient, or just efficient, if in equilibrium it selects a choice x such that

$$\forall v \forall x', \sum_{i} v_i(x) \ge \sum_{i} v_i(x').$$

Others: Budget balance, Ex interim / Ex post individual rationality. tractability, ...

Design Objectives Mechanism

Definition (Revenue maximization)

A mechanism is revenue maximizing when, among the set of functions χ and p that satisfy the other constraints, the mechanism selects the χ and p that maximize $\mathbb{E}_{\theta} \sum_{i} p_{i}(s(\theta))$, where $s(\theta)$ denotes the agents' equilibrium strategy profile.

Definition (Maxmin fairness)

A quasilinear mechanism is maxmin fair when, among the set of functions χ and p that satisfy the other constraints, the mechanism selects the χ and p that maximize

$$\mathbb{E}_{v}\left[\min_{i\in N}v_{i}(\boldsymbol{\chi}(s(v)))-\boldsymbol{p}_{i}(s(v))\right],$$

where s(v) denotes the agents' equilibrium strategy profile.

Analysing Auctions

Two Problems

Auction mechanism analysis

- determine the properties of a given auction mechanism
- methodology: treat auctions as (extended-form) Bayesian games and analyse players' (i.e. bidders') strategies

Auction mechanism design

- design the auction mechanism (i.e. the game for the bidders) with the desirable properties
- methodology: apply mechanism design techniques

(Desirable) Properties

- **Truthfulness**: bidders are incentivized to bid their true valuations **Efficiency**: the aggregated utility of bidders is maximized
- **Optimality:** maximization of seller's revenue
- **Strategy**: existence of a dominant strategy
- Manipulation vulnerability: lying auctioner, shills, bidder collusion
- Other consideration: communication complexity, private information revelation, ...

Second-Price Sealed Bid

Theorem

Truth-telling is a **dominant strategy** in a second-price sealed bid auction (assuming independent private values (IPV) model and risk neutral bidders).

Proof: Assume that the other bidders bid in some arbitrary way. We must show that i's best response is always to bid truthfully. We'll break the proof into two cases:

- Bidding honestly, i would win the auction
- Bidding honestly, i would lose the auction

Second-Price Sealed Bid Proof

Bidding honestly, *i* is the winner

If *i* bids higher, he will still win and still pay the same amount

If *i* bids lower, he will either still win and still pay the same amount. . .

... or lose and get utility of zero.

Second-Price Sealed Bid Proof

Bidding honestly, *i* is not the winner

- If *i* bids lower, he will still lose and still pay nothing
- If *i* bids higher, he will either still lose and still pay nothing...
- ... or win and pay more than his valuation.

Second-Price Sealed Bid

Advantages:

- Truthful bidding is dominant strategy
- No incentive for counter-speculation
- Computational efficiency

Disadvantages:

- Lying auctioneer
- Bidder collusion self-enforcing

Unfortunately, the auction is not very popular in real life due to its counter-intuitiveness

• but very successful in computational auction systems (e.g. Adwords)

Dutch and First-price Sealed Bid

Strategically equivalent: an agent bids without knowing about the other agents' bids

 a bidder must decide on the amount he's willing to pay, conditional on having placed the highest bid

Differences

- First-price auctions can be held asynchronously
- Dutch auctions are fast, and require minimal communication

Bidding in Dutch / First Price Sealed Bid?

Bidders strategy?

 Bidders would normally bid less than own valuation but just enough to win *and incentive compatible* and incentive to counter-speculate

Bidders don't have a **dominant strategy** any more:

- there's a trade-off between probability of winning vs. amount paid upon winning
- individually optimal strategy depends on assumptions about others' valuations

Theorem

In a first-price sealed bid auction with *n* risk-neutral agents whose valuations $v_1, v_2, ..., v_n$ are independently drawn from a uniform distribution on the same bounded interval of the real numbers, the unique symmetric equilibrium is given by the strategy profile $(\frac{n-1}{n}v_1,...,\frac{n-1}{n}v_n)$.

English and Japanese Auctions Analysis

A much more complicated strategy space

- extensive-form game
- bidders are able to condition their bids on information revealed by others
- in the case of English auctions, the ability to place jump bids

Intuitively, though, the **revealed information** doesn't make any **difference** in the **independent-private value** (IPV) setting.

proxy bidding

English and Japanese Auctions Analysis

Theorem

Under the IPV model, it is a **dominant strategy** for bidders to bid **up to** (and not beyond) their valuations in both Japanese and English auctions.

In correlated-value auctions, it can be worthwhile to counterspeculate

Revenue Equivalence

Which auction should an auctioneer choose?

To some extent, it doesn't matter...

Theorem (Revenue Equivalence)

Assume that each of *n* risk-neutral agents has an independent private valuation for a single good at auction, drawn from a common cumulative distribution F(v) that is strictly increasing and atomless on $[v, \overline{v}]$. Then any auction mechanism in which

- 1. the good will be allocated to the agent with the highest valuation; and
- 2. any agent with valuation \underline{v} has an expected utility of zero yields the **same expected revenue**, and hence results in any bidder with valuation v making the same expected payment.

Applying Revenue Equivalence TODO

Optimal Auctions

Optimal Auction Design

The seller's problem is to **design an auction mechanism** which has a Nash equilibrium giving him the **highest possible expected utility**.

assuming individual rationality

Second-prize sealed bid auction **does not maximize** expected revenue.

Can we get better revenue?

Let's have another look at 2nd price auctions:

Can we get better revenue?

Some reserve price improve revenue.

Can we get better revenue? We will be V_2 2 wins here with probability We will be R(1-R) here with probability 1 wins R² Average loss is R/2Loss is always at most R ()Gain is at least $2R(1-R) R/2 = R^2 - R^3$ \rightarrow When R²-2R³>0, reserve price of *R* is beneficial. Loss is at most $R^2 R = R^3$

(for example, R=1/4)

Reservation price: Single Bidder

How do you sell one item to one bidder?Assume his value is drawn uniformly from [0,1].

Optimal Single Item Auction

Assumptions

- independent private valuations (IPV)
- risk-neutral bidders
- strictly increasing cumulative density function F_i (pdf f_i)

Definition (virtual valuation)

Bidder *i*'s virtual valuation is $\psi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Definition (bidder-specific reserve price)

Bidder i's bidder-specific reserve price r_i^* is the value for which $\psi_i(r_i^*)=0.$

Example: uniform distribution over [0,1]: $\psi(v) = 2v - 1$

Optimal Single Item Auction

Theorem

The optimal (single-good) auction is a sealed-bid auction in which every agent is asked to declare his valuation. The good is sold to the agent $i = \arg \max_i \psi_i(\hat{v}_i)$, as long as $v_i > r_i^*$. If the good is sold, the winning agent i is charged the smallest valuation that he could have declared while still remaining the winner: $\inf\{v_i^*: \psi_i(v_i^*) \ge 0 \text{ and } \forall j \ne i, \psi_i(v_i^*) \ge \psi_j(\hat{v}_j)\}.$

The virtual valuations also increase weak bidders' bids, making them more competitive.

- Low bidders can win, paying less.
- However, bidders with higher expected valuations must bidmore aggressively

Second-Prized Auction with Reservation Price

Symmetric case: second-price auction with reserve price r^* satisfying: $\psi(r^*) = r^* - \frac{1-F(r^*)}{f(r^*)} = 0$

- Truthful mechanism when $\psi(v)$ is non-decreasing.
- Uniform distribution over [0, p]: optimum reserve price p/2.

The SPSB with Reserve Price is **not efficient**!

Optimal Auctions: Remarks

Always: **revenue** ≤ **efficiency**

- Due to individual rationality
- More efficiency makes the pie larger!

However, for optimal revenue one needs to sacrifice some efficiency.

Optimal auctions are not **detailed-free** → rarely used in practice

better to spend energy on attracting more bidders

Multi-Item Auctions

Multi-Item Auctions

Combinatorial Auctions

Auctions for **bundles of goods**

Let $\mathcal{Z} = \{z_1, \dots, z_n\}$ be a set of items to be auctioned

A valuation function $v_i: 2^{\mathbb{Z}} \mapsto \Re$ indicates how much a bundle $Z \subseteq \mathbb{Z}$ is worth to agent i

Properties

- normalization: $v(\emptyset) = 0$
- free disposal: $Z_1 \subseteq Z_2$ implies $v(Z_1) \le v(Z_2)$

Combinatorial auctions are interesting when the valuation function is **not additive**

- complementarity: $v(Z_1 \cup Z_2) > v(Z_1) + v(Z_2)$ (e.g. left and right shoe)
- substitutability: $v(Z_1 \cup Z_2) < v(Z_1) + v(Z_2)$ (e.g. cinema tickets for the same time)

Allocation

Allocation is a list of sets $Z_1, ..., Z_n \subseteq Z$, one for each agent *i* such that $Z_i \cap Z_j = \emptyset$ for all $i \neq j$ (i.e. not good allocated to more than one agent)

Allocation is determined by the auction mechanism

trivial for single-good auctions

How to define allocation for combinatorial auction?

Maximize social welfare: $U(Z_1, ..., Z_n, v_1, ..., v_n) = \sum_{i=1}^n v_i(Z_i)$

Winner Determination Problem

Definition

The **winner determination problem** for a combinatorial auctions, given the agents' declared valuations v_i is to find the social**welfare-maximizing allocation** of goods to agents. This problem can be expressed as the following integer program

Issues with Winner Determination

Communication complexity

Computation complexity

- Solution 1: Require bids to come from a restricted set, guaranteeing that the WDP can be solved in polynomial time
 - problem: these restricted sets are very restricted...
- Solution 2: Use heuristic methods to solve the problem
 - this works pretty well in practice, making it possible to solve WDPs with many hundreds of goods and thousands of bids.

Auctions Summary

Auctions are mechanisms for allocating scarce resource among self-interested agent

Mechanism-design and game-theoretic perspective

Vast range of auctions mechanisms: English, Dutch, Japanese, First-price sealed bid, Second-price sealed bid

Desirable properties: truthfulness, efficiency, optimality, ...

Rapidly expanding list of **applications** worth billions of dollars

Reading:

[Shoham] – Chapter 11

MAS Course Summary

Logics for MAS: Formally describe and analyze (multiple) agents **Agent architectures:** acting rationally in an environment **Non-cooperative game theory:** acting rationally in strategic interactions **Coalitional game theory**: making rational decisions about collaboration **Distributed constraint reasoning**: coordinating cooperative action **Social choice**: aggregating individual preferences into a collective choice **Multiagent Resource Allocation and Auctions:** distributing scarce resources Many topics not covered: bargaining / negotiation, multiagent learning,

multiagent planning, mechanism design, agent-oriented software engineering

Many interconnections

Final Notes

Rapidly evolving field with the exploding number of applications

 \rightarrow <u>http://agents.cz</u> for (Ph.D.) opportunities

Exam

- 8th Jan + 2 more dates
- mostly written

Survey/Anketa: be as specific possible: we do care

