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Where are We?

Agent architectures (inc. BDI architecture)

Logics for MAS

Non-cooperative game theory

Cooperative game theory

Auctions

Social choice

Distributed constraint reasoning 
(satisfaction and optimization)
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Motivating Example: Car Pooling

People drive to work and would like to form car 
pools. 
 Some can pick up others on their way to work. Others 

have to go out of their way to pick up others.

 A car can only hold 5 people.

Assume people care about (1) money and (2) 
time and it is possible to convert between the 
two.

Who should carpool together? 

How much should they pay each other? 

3

?
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Concerns

Rationality
 the person should should save more money than she looses time

Fairness
 savings in money and loses in time should be fairly distributed

Cooperative game theory formalizes such notions and provides 
techniques for working with them.

4OPEN INFORMATICS / MULTIAGENT SYSTEMS: COOPERATIVE GAME THEORY



Outline
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2. Basic definitions

3. Solution concepts

4. Compact representations

5. Coalition structure generation

6. Conclusion
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Introduction
Cooperative Game Theory
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Model of coalition (team) formation
 friends agreeing on a trip

 entrepreneurs trying to form companies

 companies cooperating to handle a large contract

Assumes a coalition can achieve more than (the sum of) 
individual agents
 Better to team up and split the payoff than receive payoff individually

Also called coalitional game theory

Called cooperative but agents still pursue their own interests!

Cooperative Game Theory
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Non Cooperative vs. Cooperative GT

Non-cooperative GT Cooperative GT

Payoffs go directly to 
individual agents

Payoffs go to coalitions which 
redistribute them to their 
members*

Players choose an action Players choose a coalition to join 
and agree on payoff distribution

Model of strategic 
confrontation

Model of team / cooperation 
formation

Players are self-interested

8

*transferable utility games
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Example: Task Allocation

A set of tasks needs to be performed
 they require different expertises

 they may be decomposed.

Agents do not have enough resource on their own to perform all
task.

Find complementary agents to perform the tasks
 robots have the ability to move objects in a plant, but multiple robots are 

required to move a heavy box.

 transport domain: agents are trucks, trains, airplanes, or ships. Tasks are 
shipping orders to be transported.
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The parliament of Micronesia is made up of four political parties,
A, B, C, and D, which have 45, 25, 15, and 15 representatives,
respectively. 

They are to vote on whether to pass a $100 million spending bill 
and how much of this amount should be controlled by each of the 
parties. 

A majority vote, that is, a minimum of 51 votes, is required in 
order to pass any legislation, and if the bill does not pass then 
every party gets zero to spend.

Example: Voting Game
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Example: Joint Paper Co-authorship Game

Researchers teaming up to work on a joint research paper 
together.

When successfully published, the paper contributes to each 
researcher’s reputation, prospects for promotion and can result 
in a financial bonus.
 non-transferable payoff  (except for the bonus)
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Example: Buying Ice-cream

𝒏 children, each has some amount of money
 the 𝑖-th child has 𝑏𝑖 dollars

Three types of ice-cream tubs are for sale:
 Type 1 costs $7, contains 500g 

 Type 2 costs $9, contains 750g

 Type 3 costs $11, contains 1kg 

Children have utility for ice-cream, 
and do not care about money

The payoff of each group: the maximum quantity
of ice-cream the members of the group can buy 
by pooling their money

The ice-cream can be shared arbitrarily within the group

12OPEN INFORMATICS / MULTIAGENT SYSTEMS: COOPERATIVE GAME THEORY



How Is a Cooperative Game Played? 

1. Knowing the payoffs for different coalitions, agents analyze 
which coalitions and which payoff distributions would be 
beneficial for them.

2. Agents agree on coalitions and payoff distributions 
 requires contracts – infrastructure for cooperation

3. Task is executed and payoff distributed.

We will now see how to formalize these ideas.
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Basic Definitions
Cooperative Game Theory
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Coalitional Games

TRANSFERABLE UTILITY 
GAMES
Payoffs are given to the 
group and then divided 
among its members.

Satisfied whenever there is a 
universal currency that is 
used for exchange in the 
system.

NON-TRANSFERABLE 
UTILITY GAMES
Group actions result in 
payoffs to individual group 
members.

There is no universal 
currency.
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Transferable utility assumption: the payoff to a coalition may be 
freely redistributed among its members.

Coalitional Game

Definition (Coalitional game with transferable utility)

A coalitional game with transferable utility is a pair (𝑵, 𝒗) where
• 𝑁 is a finite set of players (also termed grand coalition), 

indexed by 𝑖; and 
• 𝑣: 2𝑁 ↦ ℝ is a characteristic function (also termed valuation 

function) that associates with each coalition 𝑆 ⊆ 𝑁 a real-
valued payoff 𝒗(𝑺) that the coalition’s members can distribute 
among themselves. We assume 𝑣 ∅ = 0.
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Simple Example

𝑁 = {1,2,3}
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Illustrative Example

Characteristic function 𝑣(𝐶)
 𝑣 ∅ = 𝑣({𝐶}) = 𝑣({𝑀}) = 𝑣({𝑃}) = 0

 𝑣({𝐶,𝑀}) = 500, 𝑣({𝐶, 𝑃}) = 500, 𝑣({𝑀, 𝑃}) = 0

 𝑣({𝐶,𝑀, 𝑃}) = 750

18

Chralie: $4               Marcie: $3                 Pattie: $3
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Superadditive Games

In superadditive games, two coalitions can always merge without 
losing money (i.e. their members can work without interference); 
hence, we can assume that players form the grand coalition.

19

Definition (Superadditive game)

A coalitional game (𝑁, 𝑣) is called superadditive if 𝑣 𝐶 ∩ 𝐷 ≥
𝑣 𝐶 + 𝑣(𝐷) for every pair of disjoint coalitions 𝐶, 𝐷 ⊆ 𝑁.

? Is the icecream game superadditive?

Yes.

OPEN INFORMATICS / MULTIAGENT SYSTEMS: COOPERATIVE GAME THEORY



Outcome and Payoff Vector

Payoff is individually rational (also called imputation) 
if 𝑥𝑖 ≥ 𝑣( 𝑎𝑖 )

Note: Coalition structure often not explicitly mentioned
 grand coalition assumed in the case of superadditive games 
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Definition (Outcome and Payoff)

An outcome of a game (𝑁, 𝑣) is a pair (𝐶𝑆,  𝑥) where 
• 𝐶𝑆 = (𝐶1, … , 𝐶𝑘),  𝑖 𝐶𝑖 = 𝑁 , 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗, is a 

coalition structure, i.e., a partition of 𝑁 into coalitions.
•  𝑥 = (𝑥1, … , 𝑥𝑛), 𝑥𝑖 ≥ 0 for all 𝑖 ∈ 𝑁, 𝑖∈C 𝑥𝑖 = 𝑣(𝐶) for 

each 𝐶 ∈ 𝐶𝑆, is a payoff (distribution) vector which 
distributes the value of each coalition in 𝐶𝑆 to the coalition’s 
members.

OPEN INFORMATICS / MULTIAGENT SYSTEMS: COOPERATIVE GAME THEORY



Example

22

Outcome examples

 𝑥 = (2, 4, 4)  𝑥 = (2, 3, 4)
 𝑥 = (3, 4, 3)

not individually rational

not stable
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Example

𝑺 𝒗(𝑺)

(1) 2

(2) 2

(3) 4

(1 2) 5

(1 3) 7

(2 3) 8

(1 2 3) 9
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Outcome examples

(1)(2)(3)

(1)(2 3) (2) (1 3) (3) (1 2)

(1 2 3)

2 + 2 + 4 = 8

2 + 8 = 10 2 + 7 = 9 4 + 5 = 9

9

 𝑥 = (2, 4, 4)
 𝑥 = (3, 4, 3)

not individually 
rational

 𝑥 = (2, 3, 4)
not stable



Solution Concepts
Cooperative Games
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What are the outcomes that are likely to arise in cooperative 
games?

Rewards from cooperation need to be divided in a motivating
way.

Two concerns:

1. Stability: What the incentives are for agents to stay in a 
coalition structure?

2. Fairness: How well payoffs reflect each agent’s contribution?

Solution Concepts
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What Is a Good Outcome?

Characteristic function

𝑣 Ø = 𝑣 𝐶 = 𝑣 𝑀 = 𝑣 𝑃 = 𝑣 𝑀, 𝑃 = 0, 𝑣 𝐶,𝑀 =
𝑣 𝐶, 𝑃 = 500, 𝑣({𝐶,𝑀, 𝑃}) = 750

How should the players share the ice-cream?
 What about sharing as (200, 200, 350) ?

 The outcome (200, 200, 350) is not stable (Charlie and Marcie can get more 
ice-cream by buying a 500g tub on their own, and splitting it equally)

26

C: $4                     M: $3                 P: $3
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Under what payment distributions is the outcome of a game 
stable?
 As long as each subcoalition earns at least as much as it can make on its 

own. 

 This is the case if and only if the payoff vector is drawn from a set called the 
core.

The core of a game is the set of all stable outcomes, i.e., 
outcomes that no coalition wants to deviate from.
 analogue to strong Nash equilibrium (allows deviations by groups of agent)

The Core

Definition (Core)

A payoff vector  𝑥 is in the core of a coalitional game (𝑁, 𝑣) iff

∀𝑆 ⊆ 𝑁, 

𝑖∈S

𝑥𝑖 ≥ 𝑣(𝑆)
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Ice-Cream Game: Core

𝑣 Ø = 𝑣 𝐶 = 𝑣 𝑀 = 𝑣 𝑃 = 𝑣 𝑀, 𝑃 = 0, 𝑣 𝐶,𝑀 =
𝑣 𝐶, 𝑃 = 500, 𝑣({𝐶,𝑀, 𝑃}) = 750

(200, 200, 350) is not in the core: 
 𝑣({𝐶,𝑀}) > 𝑥𝐶 + 𝑥𝑀

(250, 250, 250) is in the core:
 no subgroup of players can deviate so that each member of the subgroup 

gets more

(750, 0, 0) is also in the core: 
 Marcie and Pattie cannot get more on their own!  fairness?

28
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Core: Example

In the core, i.e., ∀𝑆 ⊆ 𝑁, 𝑖∈S 𝑥𝑖 ≥ 𝑣(𝑆)?

 𝑥 = (2, 1, 2)

 𝑥′ = 2, 2, 2

 𝑥′′ = (1, 2, 3)

No

Yes

No

 

𝑖∈S

𝒙𝒊

2

1

2

3

4

3

5

 

𝑖∈S

𝑥𝑖
′

2

2

2

4

4

4

6

 

𝑖∈S

𝑥𝑖
′′

1

3

2

3

3

5

6
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Is the core always non-empty?

Core: Existence

No. Core existence guaranteed only for certain special 
subclasses of games.
Core is also not unique (there might be infinitely many 
payoff divisions in the core).

30

?
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𝜀-Core

If the core is empty, we may want to find approximately stable 
outcomes 

Need to relax the notion of the core:      
 core:     𝑥(𝐶) ≥ 𝑣(𝐶) for all 𝐶 ⊆ 𝑁

 𝜺-core: 𝑥 𝐶 ≥ 𝑣 𝐶 − 𝜀 for all 𝐶 ⊆ 𝑁

Example: 
𝑁 = {1, 2, 3}, 𝑣(𝐶) = 1 if |𝐶| > 1, 𝑣 𝐶 = 0 otherwise
 1/3-core is non-empty: (1/3, 1/3, 1/3) 1/3-core

 𝜀-core is empty for any 𝜀 < 1/3:
<= 𝑥𝑖 ≥ 1/3 for some 𝑖 = 1, 2, 3, so 𝑥(𝑁 ∖ {𝑖}) ≤ 2/3, 𝑣(𝑁{𝑖}) = 1
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Least Core

If an outcome  𝑥 is in ε-core, the deficit 𝑣(𝐶) −  𝑥(𝐶) of any 
coalition is at most ε.

We are interested in outcomes that minimize the worst-case 
deficit.

Let ε∗ 𝐺 = inf{ε|ε−core of G is not empty}
 it can be shown that ε∗(𝐺)-core is not empty 

Definition: ε∗(𝐺)-core is called the least core of 𝐺
 ε∗(𝐺) is called the value of the least core 

Example (previous slide): least core = 1/3-core
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Further Solution Concepts 

Nucleolus 

Bargaining set

Kernel

33

more complicated
stability considerations
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How should we fairly distribute a coalition’s payoff?  

Distributing Payments

• If the agents form (12), how much should each get paid?

34

?
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What is fair?

Axiomatic approach – a fair payoff distribution should satisfy:
 Symmetry: if two agents contribute the same, they should receive the same 

pay-off (they are interchangeable)

 Dummy player: agents that do not add value to any coalition should get 
what they earn on their own

 Additivity: if two games are combined, the value a player gets should be the 
sum of the values it gets in individual games

Fairness: Axiomatic Approach
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Agents 𝑖 and 𝑗 are interchangeable if they always contribute the 
same amount to every coalition of the other agents.
 for all 𝑆 that contains neither 𝑖 nor 𝑗, 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆 ∪ {𝑗}).

The symmetry axiom states that such agents should receive the
same payments.

Axiomatizing Fairness: Symmetry

Axiom (Symmetry)

If 𝑖 and 𝑗 are interchangeable, then 𝑥𝑖 = 𝑥𝑗 .
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Agent 𝑖 is a dummy player if the amount that 𝑖 contributes to any 
coalition is exactly the amount that 𝑖 is able to achieve alone.
 for all 𝑆 such that 𝑖 ∉ 𝑆: 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) = 𝑣({𝑖}).

The dummy player axiom states that dummy players should 
receive a payment equal to exactly the amount that they achieve
on their own.

Axiomatizing Fairness: Dummy Player

Axiom (Dummy player)

If 𝑖 is a dummy player, then 𝑥𝑖 = 𝑣( 𝑖 ).
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Consider two different coalitional game theory problems, defined 
by two different characteristic functions 𝑣′ and 𝑣′′, involving the 
same set of agents.

The additivity axiom states that if we re-model the setting as a 
single game in which each coalition 𝑆 achieves a payoff of 𝑣′(𝑆) +
𝑣′′(𝑆), the agents’ payments in each coalition should be the sum 
of the payments they would have achieved for that coalition 
under the two separate games.

Axiomatizing fairness: Additivity

Axiom (Additivity)

If  𝑥′ and  𝑥′′ are payment distributions in the game (𝑁, 𝑣′) and 
(𝑁, 𝑣′′), respectively, then 𝑥𝑖

+ = 𝑥𝑖
′ + 𝑥𝑖

′′ where  𝑥+is the
payment distribution in a game 𝑁, 𝑣′ + 𝑣′′ .
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This payoff division is called Shapley value.

Shapley Value

Theorem

Given a coalitional game (𝑁, 𝑣), there is a unique payoff 

division 𝜙(𝑁, 𝑣) that divides the full payoff of the grand 
coalition and that satisfies the Symmetry, Dummy player and 
Additivity axioms.
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This captures the “average marginal contribution” of agent 𝑖, 
averaging over all the different sequences according to which the 
grand coalition could be built up from the empty coalition.

Shapley Value

Definition (Shapley value)

Given a coalitional game (𝑁, 𝑣), the Shapley value of player 𝑖 is 
given by

𝜙𝑖 𝑁, 𝑣 =
1

𝑁!
 

𝑆⊆𝑁∖{𝑖}

𝑆 ! 𝑁 − 𝑆 − 1 ! [𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ]
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Shapley Value:  Example

If they form (12), how much should each get paid?

𝜙1 =
1

2
𝑣 1 − 𝑣 + 𝑣 21 − 𝑣 2

=
1

2
1 − 0 + 6 − 3 = 2

𝜙2 =
1

2
𝑣 2 − 𝑣 + 𝑣 12 − 𝑣 1

=
1

2
3 − 0 + 6 − 1 = 4

41
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Shapley Value: Ice Cream Example

𝑣 Ø = 𝑣 𝐶 = 𝑣 𝑀 = 𝑣 𝑃 = 𝑣 𝑀, 𝑃 = 0, 𝑣 𝐶,𝑀 = 𝑣 𝐶, 𝑃 =
500, 𝑣 𝐶,𝑀, 𝑃 = 750

Shapley value for Charlie?

𝜙𝐶 =
1

3!
 𝑣 𝐶 − 𝑣 ∅ + 𝑣 𝐶𝑀 − 𝑣 𝑀 + 𝑣 𝐶𝑃 − 𝑣 𝑃 +

42
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?
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Superadditive game

Additive game

Constant-sum game

Convex game

Simple game

Classes of Coalition Games
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An important subclass of superadditive games

Convexity is a stronger condition than superadditivity.
 “a player is more useful when he joins a bigger coalition”

Convex games have a number of useful properties
 the core is always non-empty

 Shapley value is in the core

Convex Games

Definition (Convex game)

A coalitional game (𝑁, 𝑣) is termed convex if 𝑣 𝐶 ∪ 𝐷 ≥ 𝑣 𝐶 +
𝑣 𝐷 − 𝑣(𝐶 ∩ 𝐷) for every pair of coalitions 𝐶,𝐷 ⊆ 𝑁.
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Simple Games 

Model of yes/no voting systems.

A coalition 𝐶 in a simple game is said to be winning if 𝑣(𝐶) = 1
and losing if 𝑣(𝐶) = 0.

A player 𝑖 in a simple game is a veto player if 𝑣(𝐶) = 0 for any 
𝐶 ⊆ 𝑁 ∖ {𝑖}
 equivalently, by monotonicity, v(N\{i}) = 0.

Traditionally, in simple games an outcome is identified with a 
payoff vector for N.

Theorem: A simple game has a non-empty core iff it has a veto 
player. 

45

Definition (Simple game)

A coalitional game (𝑁, 𝑣) is termed simple if 𝑣 𝐶 ∈ 0,1 for any 
𝐶 ⊆ 𝑁 and 𝑣 is monotone, i.e., if 𝑣 𝐶 = 1 and 𝐶 ⊆ 𝐷, then
𝑣 𝐷 = 1.
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Relation of Game Clases
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Representation Aspects
Cooperative Game Theory
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A naive representation of a coalition game is infeasible 
(exponential in the number of agents):
 e.g. for three agents 1, 2, 3 :

(1) = 5 (1, 3) = 10

(2) = 5 (2, 3) = 20

(3) = 5 (1, 2, 3) = 25

(1, 2) = 10

We need a succinct/compact representations.

Completeness vs. succinctness
 Complete: can represent any game but not necessarily succinct. 

 Succinct: small-size but incomplete – can only represent an (important) 
subclass.

Need for Compact Representations
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Compact Representations

49

Combinatorial 
optimization 

games

Weighted 
voting games

Complete 
representation 

languages

incomplete complete
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Induced Subgraph (Weighted Graph) Games

Characteristic function defined by an undirected weighted graph.  
Value of a coalition 𝑆 ⊆ 𝑁: 𝑣 𝑆 =  𝑖,𝑗 ⊆S𝑤𝑖,𝑗

Incomplete representation (not all characteristic functions can be 
represented) 

If all edge weights are non-negative, the game is convex (=> non-
empty core.)

Easy to compute the Shapley value for a given agent in 
polynomial time:  𝑠ℎ𝑖 =

1

2
 𝑗≠𝑖𝑤𝑖,𝑗

50

𝑣 1, 2, 3 = 3 + 2 = 5
𝑣 4 = 5
𝑣 2,4 = 1 + 5 = 6
𝑣 1,3 = 2

1 2

43

2

4

1

3

5
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Other Combinatorial Representations

Network flow games
 agents are edges in a network with source s

and sink t

 value of a coalition = amount of s–t flow it can 
carry

Assignment games
 Players are vertices of a bipartite graph

 Value of a coalition = weight of 
the max-weight induced matching

Matching games
 generalization of assignment games to other 

than bipartite graphs

51

s t

a

b

4 6
3

1 5

x

y

z z’

y’

x’
1

1

1

3

2
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Weighted Voting Games

Defined by (1) overall quota 𝑞 and (2) weight 𝑤𝑖 for each agent 𝑖

Coalition is winning if the sum of their weights exceeds the 

quota 𝑣 𝐶 =  
1 if  𝑖∈𝐶 𝑤𝑖 ≥ 𝑞

0 otherwise

Example: Simple majority voting: 𝑤𝑖 = 1 and 𝑞 = 𝑁 + 1 /2

Succinct (but incomplete representation): 𝑞,𝑤1, … , 𝑤𝑛

Extension: k-weighted voting games are a complete 
representation.
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Marginal Contribution Nets
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Other Complete Representations

Synergy coalition groups
 only represents values of coalitions of size 1 and those where there is a 

synergy

Skill-based representation
 agents are assigned a set of skills

 payoff depends on skills in a coalition

Agent-type representation
 agents classified into a small number of types

 characteristic function depends on the number of agents of certain type
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Coalition Structure 
Generation
How do we partition the set of agents into coalitions to 
maximize the overall profit?

58
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We assume utilitarian solution, i.e., maximizing the total payoff
of all coalitions.

Trivial if superadditive grand coalition.

Otherwise: search for the best coalition structure.

Finding Optimal Coalition Structure
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optimal 
coalition 
structure

Example: given 3 agents, the possible coalitions are:

{a1}        {a2}        {a3}        {a1,a2}        {a1,a3}        {a2,a3}        {a1,a2,a3}

The possible coalition structures are:

{{a1},{a2},{a3}}        {{a1,a2},{a3}}       {{a2},{a1,a3}}       {{a1},{a2,a3}}        {{a1,a2,a3}}

The Coalition Structure Generation Problem

60

v({a1}) = 20

v({a2}) = 40

v({a3}) = 30

v({a1,a2}) = 70

v({a1,a3}) = 40

v({a2,a3}) = 65

v({a1,a2,a3}) = 95

The input is the 
characteristic function

What we want as output is a 
coalition structure in which the 

sum of values is maximized

V( {{a1},{a2},{a3}} ) = 20+40+30 = 90

V( {{a1,a2},{a3}} ) = 70+30 = 100

V( {{a2},{a1,a3}} ) = 40+40 = 80

V( {{a1},{a2,a3}} ) = 20+65 = 85         

V( {{a1,a2,a3}} = 95
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Search Space Representation

1. Coalition structure graph

2. Integer partition graph
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P𝑖
𝐴 ⊆ PA contains all coalition structures that consist of exactly i coalitions

Coalition Structure Graph (for 4 agents)

Edge connects two coalition structures iff: 
1. they belong to two consecutive levels 𝒫𝑖

𝐴 and 𝒫𝑖−1
𝐴

2. the coalition structure in  𝒫𝑖−1
𝐴 can be obtained from the one in 𝒫𝑖

𝐴 by 
merging two coalitions into one

62

{a1},{a2},{a3,a4} {a3},{a4},{a1,a2} {a1},{a3},{a2,a4} {a2},{a4},{a1,a3} {a1},{a4},{a2,a3} {a2},{a3},{a1,a4}

{a1},{a2},{a3},{a4}

{a1},{a2,a3,a4} {a1,a2},{a3,a4} {a2},{a1,a3,a4} {a1,a3},{a2,a4} {a3},{a1,a2,a4} {a1,a4},{a2,a3} {a4},{a1,a2,a3}

{a1,a2,a3,a4}

P4
𝐴

P3
𝐴

P2
𝐴

P1
𝐴
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Integer Partition Graph (example of 4 agents)

63

{{a1}, {a2}, {a3,a4}} ,

{{a2}, {a3}, {a1,a4}} ,

{{a1}, {a3}, {a2,a4}} ,

{{a2}, {a4}, {a1,a3}} ,

{{a1}, {a4}, {a2,a3}} ,

{{a3}, {a4}, {a1,a2}}

{{a1}, {a2}, {a3}, {a4}}

{{a1,a2}, {a3,a4}} ,

{{a1,a3}, {a2,a4}} ,

{{a1,a4}, {a2,a3}}

{{a1, a2, a3, a4}}

{{a1}, {a2,a3,a4}} ,

{{a2}, {a1,a3,a4}} ,

{{a3}, {a1,a2,a4}} ,

{{a4}, {a1,a2,a3}}

{4}

{1,3}

{1,1,1,1}

{2,2}

{1,1,2}

Every node represents a subspace (coalition sizes match the integers in that 
node)

the subspace 
represented 

by node {1,3}

=P{1,1,2}
𝐴

=P{2,2}
𝐴 P{1,3}

𝐴 =

P{1,1,1,1}
𝐴 =

P{4}
𝐴 =

Two nodes representing partitions 𝐼, 𝐼′ ∈ ℐ𝑛 are connected iff there exists two parts 
𝑖, 𝑗 ∈ 𝐼 such that 𝐼′ = (𝐼 ∖ {𝑖, 𝑗})⨄{𝑖 + 𝑗}
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Challenge

Challenge: the number of coalitions for 𝑛 players: 

𝛼𝑛𝑛/2 ≤ 𝐵𝑛 ≤ 𝑛𝑛

for some positive constant 𝛼 (𝐵𝑛 is a Bell number)
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Algorithms for Coalition Formation

Optimal: Dynamic programming

Anytime (suboptimal) algorithms with guaranteed bounds

Heuristics algorithms

Algorithms for compact representation games
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A

A A

A

. . .

Dynamic Programming (DP) Algorithm

Main observation: To examine all coalition structure 𝐶𝑆: |𝐶𝑆2, it is 
sufficient to:
 try the possible ways to split the set of agents into two sets, and

 for every half, find the optimal partition of that half.
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Dynamic Programming (DP) Algorithm
Main theorem: Given a coalition 𝐶 ∈ 𝐴, let 𝒫𝐶be the set of 
partitions of 𝐶, and let 𝑓(𝐶) be the value of an optimal partition 
of 𝐶, i.e., 𝑓(𝐶) = max

𝑃∈𝒫𝐶
𝑉(𝑃). Then,

67

𝑓 𝐶 =
𝑣(𝐶) if 𝐶 = 1

max 𝑣 𝐶 , max
𝐶′,𝐶′′ ∈𝒫𝐶

𝑓 𝐶′ + 𝑓 𝐶′′ otherwise

the value of the coalition 
itself (without partitioning)

C

the maximum value for all such partitions

. . .

C

C C

C
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Dynamic Programming (DP) Algorithm

Algorithm:
 Iterate over all coalitions 𝐶: |𝐶| = 1, then over all 𝐶: |𝐶| = 2, then all 
𝐶: |𝐶| = 3, etc.

 For every coalition, 𝐶, compute 𝑓(𝐶) using the above equation

 While computing  𝑓(𝐶):
 the algorithm stores in 𝑡(𝐶) the best way to split 𝐶 in two

 unless it is more beneficial to keep 𝐶 as it is (i.e., without splitting)

 By the end of this process, 𝑓(𝐴) will be computed, which is by definition the 
value of the optimal coalition structure

 It remains to compute the optimal coalition structure itself, by using 𝑡(𝐴)
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evaluations performed before settingcoalition

V({1,2})=50    f({1})+f({2})=70

V({1,3})=60    f({1})+f({3})=55

V({1,4})=80    f({1})+f({4})=75 

V({2,3})=55    f({2})+f({3})=65

V({2,4})=70    f({2})+f({4})=85

V({3,4})=80    f({3})+f({4})=70

V({1,2,3})=90           f({1})+f({2,3})=95 

f({2})+f({1,3})=100     f({3})+f({1,2})=95

V({1,2,4})=120         f({1})+f({2,4})=115 

f({2})+f({1,4})=110    f({4})+f({1,2})=115

V({1,3,4})=100          f({1})+f({3,4})=110 

f({3})+f({1,4})=105     f({4})+f({1,3})=105

V({2,3,4})=115          f({2})+f({3,4})=120 

f({3})+f({2,4})=110     f({4})+f({2,3})=110

V({1,2,3,4})=140         f({1})+f({2,3,4})=150  

f({2})+f({1,3,4})=150    f({3})+f({1,2,4})=145 

f({4})+f({1,2,3})=145    f({1,2})+f({3,4})=150 

f({1,3})+f({2,4})=145    f({1,4})+f({2,3})=145

{1} {2}

{1,3}

{1,4}

{2} {3}

{2} {4}

{3,4}

{2} {1,3}

{1,2,4}

{1} {3,4}

{2} {3,4}

{1,2}  {3,4}

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

{1,2,3,4}

70

60

80

65

85

80

100

120

110

120

150

V({1})=30

V({2})=40

V({3})=25

V({4})=45

{1}

{2}

{3}

{4}

{1}

{2}

{3}

{4}

30

40

25

45

step 1

step 2

step 3

step 4

v({1}) = 30

v({2}) = 40

v({3}) = 25

v({4}) = 45

v({1,2}) = 50

v({1,3}) = 60

v({1,4}) = 80

v({2,3}) = 55

v({2,4}) = 70

v({3,4}) = 80

v({1,2,3}) = 90

v({1,2,4}) = 120

v({1,3,4}) = 100

v({2,3,4}) =  115

v({1,2,3,4}) = 140

input:

step 5

t ff
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Dynamic Programming (DP) Algorithm

Note:
 While DP is guaranteed to find an optimal coalition structure, many of its 

operations were shown to be redundant

 An improved dynamic programming algorithm (called IDP) was developed 
that avoids all redundant operations

Advantage:
 IDP is the fastest algorithm that finds an optimal coalition structure in 
𝑂(3𝑛)

Disadvantage:
 IDP provides no interim solutions before completion, meaning that it is not 

possible to trade computation time for solution quality.
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Cooperative game theory models the formation of teams of 
selfish agents.
 coalitional game formalizes the concept

 core solution concept address the issue of coalition stability

 Shapley value solution concept represents a fair distribution of payments

For practical computation, compact representations of coalition 
games are required.

For non-superadditive games, (optimal) coalition structure needs 
to be found.

Reading:
 [Weiss]: Chapter 8

 [Shoham]: 12.1-12.2

 [Vidal]: Chapter 4

Conclusions
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