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Where are We?

Agent architectures (inc. BDI architecture)

Logics for MAS

Non-cooperative game theory

Cooperative game theory

Auctions

Social choice

Distributed constraint reasoning 
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Formalism Review
Distributed Constraint Reasoning
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Constraint Network

A constraint network𝒩 is formally defined as a triple 〈𝑋, 𝐷, 𝐶〉
where:
𝑋 = 𝑥1, … , 𝑥𝑛 is a set of variables;

𝐷 = {𝐷1, … , 𝐷𝑛} is a set of finite variable domains, which 
enumerate all possible values of the corresponding variables; 

𝐶 = {𝐶1, … , 𝐶𝑚} is a set of constraints; where a constraint 𝐶𝑖 is 
defined on a subset of variables 𝑆𝑖 ⊆ 𝑋 which comprise the 
scope of the constraint
 𝑟𝑖 = |𝑆𝑖| is the arity of constraint 𝑖
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Hard vs. Soft Constraints

Hard constraint 𝐶𝑖
ℎis a Boolean predicate 𝑃𝑖 that defines valid 

joint assignments of variables in the scope
𝑃𝑖: 𝐷𝑖1 ×⋯× 𝐷𝑖𝑟 → {F, T}

Soft constraint 𝐶𝑖
𝑠 is a function 𝐹𝑖 that maps every possible joint 

assignment of all variables in the scope to a real value
𝐹𝑖: 𝐷𝑖1 ×⋯× 𝐷𝑖𝑟 → ℜ

We further assume 𝐹𝑖 is non-negative
 non-restrictive, can always shift
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Binary Constraint Networks

Binary constraint networks are those 
where each constraint (soft or hard) is 
defined over two variables.

Every constraint network can be mapped 
to a binary constraint network
 requires the addition of variables and 

constraints

 may add complexity to the model

Binary constraint networks can be 
represented by a constraint graph
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Distributed Constraint Reasoning Problem

A distributed constraint reasoning problem consists of a 
constraint network 〈𝑋, 𝐷, 𝐶〉 and a set of agents 𝐴 =
𝐴1, … , 𝐴𝑘 where each agent:
 controls a subset of the variables 𝑋𝑖 ⊆ X

 is only aware of constraints that involve variable it controls

 communicates only with its neighbours

This lecture: Distributed Constraint Optimization Problems 
(DCOPs)
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Algorithms for Distributed Constraint 
Optimization
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Search

ADOPT

BnB-ADOPT

Dynamic 
programming

DPOP

Incomplete / 
Approximation

Local greedy

DSA

MGM

Local inference Max-Sum
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Complete Algorithms
Distributed Constraint Optimization
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Synchronous BnB
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Agents agree on an variable order and repeat:
1. send partial solution up to 𝑋𝑘−1 to 𝑘-th agent.

2. 𝑘-th agent generates the next extension to this partial solution whose partial cost (i.e. 
lower bound) is not greater than the upper bound.

3. if the solution cannot be extended: 𝑘 ← 𝑘 − 1 (backtrack control to previous agent).

4. if solution can be extended consistently: update lower bound, 𝑘 ← 𝑘 + 1 (pass 
control to the next agent)

5. if 𝑘 > 𝑛: stop  if lower-bound (now the total cost) < upper bound, then upper 
bound = lower bound; remember best so far assignment

6. if 𝑘 < 1: stop  return best so far assignment.



Asynchronous Backtracking: 
Assumptions

1. Agents communicate by sending messages

2. An agent can send messages to others, iff it knows their
identifiers (directed communication / no broadcasting)

3. The delay transmitting a message is finite but random

4. For any pair of agents, messages are delivered in the order
they were sent

5. Agents know the constraints in which they are involved, but 
not the other constraints

6. Each agent owns a single variable 
(agents = variables)

7. Constraints are binary (2 variables involved)
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not essential, 
can be lifted 



Decentralised Complete Algorithms

Search-based

• Uses distributed search

• Exchange individual values

• Small messages but

• . . . exponentially many

• Representative: ADOPT

Dynamic programming

• Uses distributed inference

• Exchange constraints

• Few messages but

• . . . exponentially large

• Representative: DPOP
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ADOPT*: Asynchronous
Distributed OPTimization

First asynchonous complete algorithm for 
optimally solving DCOP

Distributed backtrack search using a 
“opportunistic” best-first strategy
 agents keep on choosing the best value based on 

the current available information

Backtrack thresholds used to speed up the 
search of previously explored solutions.

Termination conditions that check if the 
bound interval is less than a given valid 
error bound (0 if optimal)
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*ADOPT: asynchronous distributed constraint optimization with quality guarantees; P. Jay Modi, W. 
M. Shen, M. Tambe, M. Yokoo, Artificial Intelligence, 2005



ADOPT Overview

Opportunistic best-first search strategy, i.e., each agent keeps on 
choosing the value with minimum lower bound.
 Lower bounds are more suitable for asynchronous search—a lower bound 

can be computed without necessarily having accumulated global cost 
information.

Each agent keeps a lower and upper bound on the cost for the 
sub-problem below it (given assignments from above) and on 
the sub-problems for each one of its children.

It then tells the children to look for a solution but ignore any 
partial solution whose cost is above the lower bound because it 
already knows that it can get that lower cost.
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ADOPT: DFS Tree
ADOPT assumes that agents are arranged in a depth-first search 
(DFS) tree:
 split constraint graph into a spanning tree and backedges

 two constrained nodes must be in the same path to the root by tree links 
(same branch), i.e., backedges from a node go to the ancestors of the node

Every graph admits a DFS tree. A DFS can be constructed in 
polynomial time using a distributed algorithm.
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ADOPT: Messages

value(𝑝𝑎𝑟𝑒𝑛𝑡 → 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ 𝑝𝑠𝑒𝑢𝑑𝑜𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑎):
parent informs its descendants that it has taken value 𝑎

cost(𝑐ℎ𝑖𝑙𝑑 → 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡):
child informs parent of the best cost of its assignment; attached 
context to detect obsolescence;

threshold (𝑝𝑎𝑟𝑒𝑛𝑡 → 𝑐ℎ𝑖𝑙𝑑, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): 
minimum cost of solution in child is at least 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

termination (𝑝𝑎𝑟𝑒𝑛𝑡 → 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛): solution found, terminated

17 MAS LECTURE 9: DISTRIBUTED CONTRAINT REASONING 2



ADOPT: Data Structures
1. Current context (agent view):

list 𝑥𝑖 , 𝑣 of values 𝑣 of higher-priority agents 
𝑥𝑖 sharing a constrain with 𝑥𝑗

2. Bounds: for each 𝑥𝑗’s value 𝑑 and child 𝑥𝑘
 lower bounds  𝑙𝑏(𝑑, 𝑥𝑘)

 upper bounds  𝑢𝑏(𝑑, 𝑥𝑘)

 thresholds       𝑡ℎ(𝑑, 𝑥𝑘)

 contexts 𝒞(𝑑, 𝑥𝑘)

3. Threshold 𝑡ℎ

Stored contexts must be active: 
 left-hand side is satisfied in the current context

If a children’s 𝑥𝑘 context becomes obsolete, it is 
removed/reset, i.e., 𝑙𝑏 . , 𝑥𝑘 , 𝑡ℎ . , 𝑥𝑘 ←
0, 𝑢𝑏 . , 𝑥𝑘 ← ∞
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𝑥𝑖

MAS LECTURE 9: DISTRIBUTED CONTRAINT REASONING 2



Local Cost Function
The local cost function 𝛿(𝑥𝑖) for an agent 𝐴𝑖 is the sum of the 
values of constraints involving only higher-level neighbours in the 
DFS.
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partial cost in the current context 𝒞: 𝛿𝑗 𝑑 =  (𝑥𝑖,𝑣)∈𝒞𝐹𝑖𝑗(𝑣, 𝑑)



Key Idea: Opportunistic Best First

𝑂𝑃𝑇𝑥𝑗 𝒞 =

min
𝑑∈𝑑𝑗
(𝛿j 𝑑 +  

𝑥𝑘∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑥𝑗

𝑂𝑃𝑇𝑥𝑘(𝒞⋃ 𝑥𝑗 , 𝑑 ))

i.e. the best value for 𝑥𝑗 is a value minimizing the sum of 𝑥𝑗’s local 
cost and the lowest cost of children under the context extended 
with the assignment
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Bound Computation

𝑂𝑃𝑇𝑥𝑘 values are incrementally bounded using [𝑙𝑏𝑘 , 𝑢𝑏𝑘]
intervals propagated in cost messages

Lower bound computation:
 Each agent evaluates for each possible value of its variable: its local cost 

function with respect to the current context adding all the compatible
lower bound messages received from its children.

 𝐿𝐵𝑗 𝑑 = 𝛿𝑗 𝑑 +  𝑥𝑘∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥𝑗) 𝑙𝑏(𝑑, 𝑥𝑘)

 𝐿𝐵𝑗 = min
𝑑∈𝑑𝑗
𝐿𝐵𝑗 𝑑

Upper bound computation:
 𝑈𝐵 𝑑 = 𝛿 𝑑 +  𝑥𝑘∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥𝑗)𝑢𝑏(𝑑, 𝑥𝑘)

 𝑈𝐵𝑗 = max
𝑑∈𝑑𝑗
𝑈𝐵𝑗(𝑑)
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Lower Bound Calculation Example
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Lower Bound Calculation Example
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Lower Bound Calculation Example
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ADOPT Operation

Each time an agent receives a message:
 Processes it: 
 can invalidate context

 may take a new value minimizing its lower bound

 Sends value messages to its children and pseudochildren

 Sends a cost message to its parent

 (threshold messages)
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ADOPT: Example

4 Variables (4 agents) x1, x2, x3 x4 with 
D = {a, b}

4 binary identical cost functions

Constraint graph:
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ADOPT Example
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Backtrack Thresholds

The search strategy is based on lower bounds.

Problem
 Lower/upper bounds only stored for the current context

 Values abandoned before proven to be suboptimal
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Reconstruction of Abandoned Solutions

𝐴1 changes its value and the context with 
𝑥1 = 0 is visited again.
 Reconstructing from scratch is inefficient

 Remembering solutions is expensive

Detailed cost information lost but stored 
at parent’s node in an aggregated form.

Can be used for effective reconstruction 
of abandoned solutions.
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Backend Threshold

Backtrack thresholds: used to speed up the search of previously 
explored solutions.
 lower bound previously determined by children

 polynomial space

Send by parents to a child as allowance on solution cost:
 child then heuristically re-subdivides, or allocates, the threshold among its 

own children. 

 can be incorrect: correct for over-estimates over time as cost feedback is 
(re)received from the children.

Control backtracking to efficiently search
 Key point: do not change value until 𝐿𝐵 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , i.e., 

there is a strong reason to believe that current value is not the best (wait 
until having accumulated enough cost messages)
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Backend Threshold: Example

A child agent will not change its variable value so long as cost is 
less than the backtrack threshold given to it by its parent.
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Threshold Reballancing

Parent distributes the accumulated bound among children and 
corrects subdivision as feedback is received from children

Maintain invariants:
 allocation invariant: the threshold on cost for 𝑥𝑗 must equal the local cost of 

choosing 𝑑 plus the sum of the thresholds allocated to 𝑥𝑗’s children.

 child threshold invariant: The threshold allocated to child 𝑥𝑘 by parent 𝑥𝑗
cannot be less than the lower bound or greater than the upper bound 
reported by 𝑥𝑘 to 𝑥𝑗 .
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Reballancing

When 𝐴1 receives a new lower bound from 
𝐴2 rebalances thresholds.

𝐴1 resends threshold messages to 𝐴2 and 𝐴3.
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ADOPT Properties

For finite DCOPs with binary non-negative constraints, ADOPT is 
guaranteed to terminate with the globally optimal solution.
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Performance on Graph Coloring 

•ADOPT’s lower bound search method and parallelism yields significant 
efficiency gains.

•Sparse graphs (density 2) solved optimally and efficiently by ADOPT.

•Communication only grows linearly
• thanks to the sparsity of constraint graph

36

Avg. number of cycles, 
link density = 2

Avg. number of cycles, 
link density = 3

Avg. messages per cycle
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ADOPT Approximation

ADOPT can be used for finding suboptimal solutions with 
guaranteed error bound 𝑏.

Terminate when lower bound at the root get within 𝑏 of the 
upper bound.

Using error bound, less of the solution space explored ADOPT 
is able to find a solution faster, thereby providing a method to 
trade-off computation time for guaranteed solution quality. 
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Adopt summary – Key Ideas

Optimal, asynchronous algorithm for DCOP
 polynomial space at each agent

Weak Backtracking  
 lower bound based search method

 Parallel search in independent subtrees

Efficient reconstruction of abandoned solutions
 backtrack thresholds to control backtracking

Bounded error approximation
 sub-optimal solutions faster

 bound on worst-case performance
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Approximation 
Algorithms
Distributed Constraint Optimization
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Why Approximate Algorithms

Optimality in practical applications often not achievable

Approximate algorithms
 sacrifice optimality in favour of computational and communication 

efficiency

 well-suited for large-scale distributed applications:
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Centralized Local Greedy approaches

Start from a random assignment for all the variables

Do local moves if the new assignment improves the value (local 
gain)

Local: changing the value of a small set of variables (in most case 
just one)

The search stops when there is no local move that provides a 
positive gain, i.e., when the process reaches a local maximum.
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Issues with Distributed Local Greedy 
Algorithms

Parallel execution: A greedy local move might be harmful/useless

 Need coordination
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Issues with Distributed Local Greedy Alg

When operating in a decentralized context:

Problem: Out-of-date local knowledge
 Assumption that other agents do not change their values

 A greedy local move might be harmful/useless

Solution:
 Stochasticity on the decision to perform a move (DSA)

 Coordination among neighbours on who is the agent that should move 
(MGM)
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Distributed Stochastic Algorithm (DSA)

Greedy local search with activation probability to mitigate issues 
with parallel executions
 DSA-1: change value of one variable at time

Initialize agents with a random assignment and communicate 
values to neighbours

Each agent:
 Generates a random number and executes only if it is less than activation 

probability

 When executing choose a value for the variable such that the local gain is 
maximized

 Communicate and receive possible variables change to/from neighbours
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DSA-1: Execution Example
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DSA-1: Discussion

Extremely low computation/communication

Good performance in various domains
 e.g. target tracking [Fitzpatrick Meertens 03, Zhang et al. 03],

 Shows an anytime property (not guaranteed)

 Benchmarking technique for coordination

Problems with the activation probability
 must be tuned [Zhang et al. 03]

 domain-dependent: no general rule, hard to characterise results across 
domains
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Maximum Gain Message (MGM-1)

Coordinate among neighbours to decide which single agent is 
going to move

Initialize agents with a random assignment and communicate 
values to neighbours

Each agent:
 Compute and exchange possible gains

 Agent with maximum (positive) gain executes

 Communicate and receive possible variables changes to/from neighbours
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MGM-1: Example
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MGM-1 Discussion

More communication than DSA (but still linear)
 Empirically, similar to DSA

No threshold to set
 Does not require any parameter tuning.

Guaranteed to be monotonic (Anytime behavior)
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Local Greedy Approaches

Very little memory and computation.

Anytime behaviours.

But: Could result in very bad solutions (no guarantees)
 local maxima arbitrarily far from optimal.
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Quality Guarantees for Approximation 
Techniques

Key area of research

Address trade-off between guarantees and computational effort

Particularly important for:
 dynamic settings

 severe constrained resources (e.g. embedded devices)

 safety critical applications (e.g. search and rescue)
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Categories of Quality Guarantees

Off-line
 Prior running the algorithm

 Not tied to specific problem 
instances

On-line
 After running the algorithm

 On the particular problem 
instance
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Summary
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FRODO: a FRamework for Open/Distributed 
Optimization
Framework for experimental evaluation of 
DCSP/DCOP algorithms

Input
 files defining optimization problems to be solved 

(in XCSP 2.1 format)

 configuration files defining the algorithm to be 
used to solve them

Algorithms implemented
 SynchBB, MGM and MGM-2, ADOPT, DSA, DPOP, S-

DPOP, MPC-Dis(W)CSP4, O-DPOP, AFB, MB-DPOP, 
Max-Sum, ASO-DPOP, P-DPOP, P2-DPOP, E[DPOP], 
Param-DPOP, and P3 ∕ 2-DPOP

Supports various performance metrics
 numbers and sizes of messages sent

 Non-Concurrent Constraint Checks

 simulated time

http://frodo2.sourceforge.net/
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Conclusion

Distributed constraint optimization generalizes distributed 
constraint satisfaction by allowing real-valued constraints

Both complete and approximate algorithms exist
 complete can require exponential number of message exchanges (in the 

number of variables)

 approximate can return (very) suboptimal solutions

Very active areas of research with a lot of progress – new 
algorithms emerging frequently

Reading: [Vidal] – Chapter 2; ADOPT: asynchronous distributed 
constraint optimization with quality guarantees; IJCAI 2011 
Optimization in Multi-Agent Systems tutorial, Part 2: 37-61min 
and Part 3: 0-38min 
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