Solving Normal-Form Games

Branislav Bošanský

Czech Technical University in Prague
branislav.bosansky@agents.fel.cvut.cz

November 3, 2015

Previously ... on multi-agent systems.

Examples

Give an example of a general-sum game, with two pure NE such that when players play strategies from different equilibria, the expected outcome is worse for both players.

Can this situation happen in a zero-sum game?

Iterated Elimination of Dominated Strategies

Determine whether the process of iterated elimination of strictly dominated strategies yields a single possible outcome. If so, verify that this is the only NE of the game.

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
\mathbf{A}	$(1,0)$	$(3,0)$	$(2,1)$
\mathbf{B}	$(3,1)$	$(0,1)$	$(1,2)$
\mathbf{C}	$(2,1)$	$(1,6)$	$(0,2)$

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
\mathbf{A}	$(1,3)$	$(6,1)$	$(4,2)$
\mathbf{B}	$(0,4)$	$(2,9)$	$(-1,3)$
\mathbf{C}	$(2,-1)$	$(5,2)$	$(6,3)$

How would you prove that the elimination of strictly dominated strategies preserve Nash Equilibria?

And now ...

Computing Nash Equilibria in Mixed Strategies

	\mathbf{L}	\mathbf{R}
\mathbf{U}	$(3,-3)$	$(-1,1)$
\mathbf{D}	$(-2,2)$	$(1,-1)$

This game has no NE in pure strategies.
How can we find a NE in mixed strategies? Recall the definition ... each player plays the best response to the strategy of the opponent.

Let s_{L}, s_{R} be the probabilities from a mixed strategy of the column player. What is the expected utility of the row player for playing action U and D respectively?

Computing Nash Equilibria in Mixed Strategies

	\mathbf{L}	\mathbf{R}
\mathbf{U}	$(3,-3)$	$(-1,1)$
\mathbf{D}	$(-2,2)$	$(1,-1)$

$\mathbb{E}[U]=3 s_{L}-s_{R}, \mathbb{E}[D]=-2 s_{L}+s_{R}$
Now, the row player plays the best response. What is the expected utility? $\max (\mathbb{E}[U], \mathbb{E}[D])=V^{*}$
What is to goal of the column player? $\min V^{*}$
Now we have everything for a linear program ...

Computing Nash Equilibria in Mixed Strategies

	\mathbf{L}	\mathbf{R}
\mathbf{U}	$(3,-3)$	$(-1,1)$
\mathbf{D}	$(-2,2)$	$(1,-1)$

$$
\begin{gathered}
\min _{s_{L}, s_{R}, V^{*}} V^{*} \quad \text { s.t. } \\
s_{L}+s_{R}=1, \quad 0 \leq s_{L}, s_{R} \leq 1 \\
3 s_{L}-s_{R} \leq V^{*} \\
-2 s_{L}+s_{R} \leq V^{*}
\end{gathered}
$$

Construct a Mathematical Program for the General-Sum Case

Key observations:

- you will need a multiplication (the problem cannot be formulated as an LP, it is PPAD-complete (or NP-complete for finding a specific NE))
- maximin and minmax do not equal any more - we need to consider utilities of each player separately
- if any strategy is played with a non-zero probability, it is a best response (yields maximal utility against the strategy of the opponent)
- rewrite the inequality constraints using slack variables $a \geq b \rightsquigarrow a-t=b, t \geq 0$

Construct a Mathematical Program for Other Equilibria

Correlated Equilibrium (2 players)

Given a 2-player game $G=(N, A, u)$, a Correlated Equilibrium is a tuple (v, π, σ), where v is a couple of random variables $v=\left(v_{1}, v_{2}\right)$ with respective domains $D=\left(D_{1}, D_{2}\right), \pi$ is a joint distribution over $v, \sigma=\left(\sigma_{1}, \sigma_{2}\right)$ is a vector of mappings $\sigma_{i}: D_{i} \rightarrow A_{i}$, and for each agent i and every mapping $\sigma_{i}^{\prime}: D_{i} \rightarrow A_{i}$ it is the case that

$$
\sum_{d \in D} \pi(d) u_{i}\left(\sigma_{i}\left(d_{i}\right), \sigma_{-i}\left(d_{-i}\right)\right) \geq \sum_{d \in D} \pi(d) u_{i}\left(\sigma_{i}^{\prime}\left(d_{i}\right), \sigma_{-i}\left(d_{-i}\right)\right)
$$

Construct a Mathematical Program for Other Equilibria

Stackelberg Equilibrium (2 players)

Given a 2-player game $G=(N, A, u)$, a Stackelberg Equilibrium is a tuple $\left(s_{1}, s_{2}\right)$ such that

$$
\left(s_{1}, s_{2}\right)=\underset{s_{1}^{\prime} \in S_{1}, s_{2}^{\prime} \in B R_{2}\left(s_{1}^{\prime}\right)}{\arg \max } u_{1}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
$$

where $B R_{2}\left(s_{1}\right)$ is a set of pure strategies that are the best response of player 2 to strategy s_{1}.

