Solving Normal-Form Games

Branislav Bošanský

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

November 3, 2015

Previously ... on multi-agent systems.

Give an example of a general-sum game, with two pure NE such that when players play strategies from different equilibria, the expected outcome is worse for both players.

Can this situation happen in a zero-sum game?

Determine whether the process of iterated elimination of **strictly dominated** strategies yields a single possible outcome. If so, verify that this is the only NE of the game.

	X	Y	Z
Α	(1,0)	(3, 0)	(2,1)
В	(3,1)	(0, 1)	(1,2)
С	(2, 1)	(1, 6)	(0, 2)

	X	Y	Z
Α	(1, 3)	(6, 1)	(4, 2)
В	(0, 4)	(2,9)	(-1,3)
С	(2, -1)	(5, 2)	(6,3)

How would you prove that the elimination of strictly dominated strategies preserve Nash Equilibria?

And now ...

Computing Nash Equilibria in Mixed Strategies

	L	R
U	(3, -3)	(-1,1)
D	(-2,2)	(1, -1)

This game has no NE in pure strategies.

How can we find a NE in mixed strategies? Recall the definition ... each player plays the best response to the strategy of the opponent.

Let s_L, s_R be the probabilities from a mixed strategy of the column player. What is the expected utility of the row player for playing action U and D respectively?

Computing Nash Equilibria in Mixed Strategies

	L	R
U	(3, -3)	(-1,1)
D	(-2,2)	(1, -1)

$$\mathbb{E}[U] = 3s_L - s_R, \ \mathbb{E}[D] = -2s_L + s_R$$

Now, the row player plays the best response. What is the expected utility? $\max(\mathbb{E}[U], \mathbb{E}[D]) = V^*$ What is to goal of the column player? $\min V^*$ Now we have everything for a linear program ...

Computing Nash Equilibria in Mixed Strategies

	L	R
U	(3, -3)	(-1,1)
D	(-2,2)	(1, -1)

$$\min_{s_L, s_R, V^*} V^* \quad \text{s.t.} \\ s_L + s_R = 1, \quad 0 \le s_L, s_R \le 1 \\ 3s_L - s_R \le V^* \\ -2s_L + s_R \le V^*$$

Construct a Mathematical Program for the General-Sum Case

Key observations:

- you will need a multiplication (the problem cannot be formulated as an LP, it is PPAD-complete (or NP-complete for finding a specific NE))
- maximin and minmax do not equal any more we need to consider utilities of each player separately
- if any strategy is played with a non-zero probability, it is a best response (yields maximal utility against the strategy of the opponent)
- \blacksquare rewrite the inequality constraints using slack variables $a \geq b \rightsquigarrow a-t=b, t \geq 0$

Correlated Equilibrium (2 players)

Given a 2-player game G = (N, A, u), a *Correlated Equilibrium* is a tuple (v, π, σ) , where v is a couple of random variables $v = (v_1, v_2)$ with respective domains $D = (D_1, D_2)$, π is a joint distribution over v, $\sigma = (\sigma_1, \sigma_2)$ is a vector of mappings $\sigma_i : D_i \to A_i$, and for each agent i and every mapping $\sigma'_i : D_i \to A_i$ it is the case that

$$\sum_{d \in D} \pi(d)u_i(\sigma_i(d_i), \sigma_{-i}(d_{-i})) \ge \sum_{d \in D} \pi(d)u_i(\sigma'_i(d_i), \sigma_{-i}(d_{-i}))$$

Stackelberg Equilibrium (2 players)

Given a 2-player game G = (N, A, u), a Stackelberg Equilibrium is a tuple (s_1, s_2) such that

$$(s_1, s_2) = rgmax_{s'_1 \in S_1, s'_2 \in BR_2(s'_1)} u_1(s'_1, s'_2)$$

where $BR_2(s_1)$ is a set of pure strategies that are the best response of player 2 to strategy s_1 .