DISTRIBUTED CONSTRAINTS SATISFACTION

AE4M36MAS - Multiagent systems

CENTRALIZED CASE

Find an assignment for variables that satisfy given constraints.

•
$$\mathcal{X} = \{x_1, \dots, x_n\}$$
 — set of *variables* to assign

•
$$\mathcal{D} = \{D_1, \dots, D_n\}$$
 — set of domains $(x_i \in D_i)$

•
$$C = \{C_1, \ldots, C_m\}$$
 — set of *constraints*

 $C_i \subseteq D_{i_1} \times \cdots \times D_{i_r}$ denotes a *r*-ary constraint over variables x_{i_1}, \ldots, x_{i_r}

Solution: *n*-tuple (d_1, \dots, d_n) , such that:

•
$$d_i \in D_i$$
, for $1 \le i \le n$

• $(d_{i_1}, \ldots, d_{i_r}) \in C_k$ for every constraint $C_k \subseteq D_{i_1} \times \cdots \times D_{i_r}$

Synchronized backtracking

```
v_i \leftarrow value \text{ from } D_i \text{ consistent with } (v_1, \dots, v_{i-1});

if No such v_i \text{ exists then}

| backtrack;

else if i = n then

| stop;

else

| ChooseValue(x_{i+1}, (v_1, \dots, v_i));

end

Algorithm 1: ChooseValue(x_i, (v_1, \dots, v_{i-1}))
```

Enhancements?

• AC-3 algorithm? (arc consistency - e.g. combinatorial optimization)

DISTRIBUTED CASE

• $\mathcal{X} = \{x_1, \dots, x_n\}$ — set of *variables* to assign

•
$$\mathcal{D} = \{D_1, \dots, D_n\}$$
 — set of *domains* $(x_i \in D_i)$

•
$$C = \{C_1, \ldots, C_m\}$$
 — set of *constraints*

•
$$\mathcal{A} = \{A_1, \dots, A_k\}$$
 — set of *agents*

Every variable **must be** assigned to one of the agents. \rightarrow otherwise the DCSP problem is **not fully defined** • $\mathcal{X} = \{x_1, \dots, x_n\}$ — set of *variables* to assign

•
$$\mathcal{D} = \{D_1, \dots, D_n\}$$
 — set of *domains* $(x_i \in D_i)$

•
$$C = \{C_1, \ldots, C_m\}$$
 — set of *constraints*

•
$$\mathcal{A} = \{A_1, \dots, A_k\}$$
 — set of *agents*

Every variable **must be** assigned to one of the agents. \rightarrow otherwise the DCSP problem is **not fully defined** • $\mathcal{X} = \{x_1, \dots, x_n\}$ — set of *variables* to assign

•
$$\mathcal{D} = \{D_1, \dots, D_n\}$$
 — set of *domains* $(x_i \in D_i)$

•
$$C = \{C_1, \ldots, C_m\}$$
 — set of *constraints*

•
$$\mathcal{A} = \{A_1, \dots, A_k\}$$
 — set of *agents*

Every variable **must be** assigned to one of the agents. \rightarrow otherwise the DCSP problem is **not fully defined**

Example

ASYNCHRONOUS BACKTRACKING

- Every agent controls a single variable
- Constraints are binary
- Messages are delivered in a finite time (but this time may vary randomly)
- Messages are delivered in the order they were sent \rightarrow imagine an unreliable TCP/IP network

- Total ordering of agents (priorities)
- Constraints he is involved in
- Domain of a variable controlled by himself

- Current assignment
- Set of outgoing links (\sim who needs to know my assignment)
- Agent view agent's idea about current assignment of other agents

ightarrow May be out of sync!

• Current assignment

- Set of outgoing links (\sim who needs to know my assignment)
- Agent view agent's idea about current assignment of other agents

ightarrow May be out of sync!

- Current assignment
- Set of outgoing links (\sim who needs to know my assignment)
- Agent view agent's idea about current assignment of other agents

 \rightarrow May be out of sync!

- Current assignment
- Set of outgoing links (\sim who needs to know my assignment)
- Agent view agent's idea about current assignment of other agents

 \rightarrow May be out of sync!

- Current assignment
- Set of outgoing links (\sim who needs to know my assignment)
- Agent view agent's idea about current assignment of other agents

 \rightarrow May be out of sync!

- John needs to arrange a meeting with Bob and Alice
- As all agents, he is a busy guy both meetings must happen in a single day
- Bob doesn't know about Alice's meeting and vice versa

 $\mathcal{X} = \{x_{Alice}, x_{Bob}, x_{John}\}$ Agent *i* controls variable x_i .

 $\mathcal{D} = \{ D_{Alice}, D_{Bob}, D_{John} \}$ $D_{Alice} = \{ Mon, Thu \}$ $D_{Bob} = \{ Tue, Thu \}$ $D_{John} = \{ Mon, Tue, Thu \}$

 $C = \{x_{\mathsf{Bob}} = x_{\mathsf{John}}, x_{\mathsf{Alice}} = x_{\mathsf{John}}\}$

 $\mathcal{X} = \{x_{Alice}, x_{Bob}, x_{John}\}$ Agent *i* controls variable x_i .

 $\begin{aligned} \mathcal{D} &= \{ D_{\text{Alice}}, D_{\text{Bob}}, D_{\text{John}} \} \\ D_{\text{Alice}} &= \{ \text{Mon}, \text{Thu} \} \\ D_{\text{Bob}} &= \{ \text{Tue}, \text{Thu} \} \\ D_{\text{John}} &= \{ \text{Mon}, \text{Tue}, \text{Thu} \} \end{aligned}$

$$\mathcal{C} = \{x_{\mathsf{Bob}} = x_{\mathsf{John}}, x_{\mathsf{Alice}} = x_{\mathsf{John}}\}$$

 $\mathcal{X} = \{x_{Alice}, x_{Bob}, x_{John}\}$ Agent *i* controls variable x_i .

 $\mathcal{D} = \{ D_{\text{Alice}}, D_{\text{Bob}}, D_{\text{John}} \}$ $D_{\text{Alice}} = \{ \text{Mon}, \text{Thu} \}$ $D_{\text{Bob}} = \{ \text{Tue}, \text{Thu} \}$ $D_{\text{John}} = \{ \text{Mon}, \text{Tue}, \text{Thu} \}$

 $C = \{x_{\mathsf{Bob}} = x_{\mathsf{John}}, x_{\mathsf{Alice}} = x_{\mathsf{John}}\}$

 $\mathcal{X} = \{x_{Alice}, x_{Bob}, x_{John}\}$ Agent *i* controls variable x_i .

$$\begin{split} \mathcal{D} &= \{ D_{\text{Alice}}, D_{\text{Bob}}, D_{\text{John}} \} \\ D_{\text{Alice}} &= \{ \text{Mon}, \text{Thu} \} \\ D_{\text{Bob}} &= \{ \text{Tue}, \text{Thu} \} \\ D_{\text{John}} &= \{ \text{Mon}, \text{Tue}, \text{Thu} \} \end{split}$$

 $C = \{x_{\mathsf{Bob}} = x_{\mathsf{John}}, x_{\mathsf{Alice}} = x_{\mathsf{John}}\}$

 $\mathcal{X} = \{x_{Alice}, x_{Bob}, x_{John}\}$ Agent *i* controls variable x_i .

$$\begin{split} \mathcal{D} &= \{ D_{\text{Alice}}, D_{\text{Bob}}, D_{\text{John}} \} \\ D_{\text{Alice}} &= \{ \text{Mon}, \text{Thu} \} \\ D_{\text{Bob}} &= \{ \text{Tue}, \text{Thu} \} \\ D_{\text{John}} &= \{ \text{Mon}, \text{Tue}, \text{Thu} \} \end{split}$$

$$C = \{x_{\mathsf{Bob}} = x_{\mathsf{John}}, x_{\mathsf{Alice}} = x_{\mathsf{John}}\}$$

 $\mathcal{X} = \{x_{Alice}, x_{Bob}, x_{John}\}$ Agent *i* controls variable x_i .

$$\begin{split} \mathcal{D} &= \{ D_{\text{Alice}}, D_{\text{Bob}}, D_{\text{John}} \} \\ D_{\text{Alice}} &= \{ \text{Mon}, \text{Thu} \} \\ D_{\text{Bob}} &= \{ \text{Tue}, \text{Thu} \} \\ D_{\text{John}} &= \{ \text{Mon}, \text{Tue}, \text{Thu} \} \end{split}$$

$$C = \{x_{\mathsf{Bob}} = x_{\mathsf{John}}, x_{\mathsf{Alice}} = x_{\mathsf{John}}\}$$

Alice: \emptyset Bob: \emptyset John: \emptyset

Let's all propose a date and see what happens!

 $\mathsf{Bob} \to \mathsf{John}:$ $\mathsf{Ok?}(\mathsf{Bob} \to \mathsf{Tue})$

Alice \rightarrow John: Ok?(Alice \rightarrow Mon)

Alice: \emptyset Bob: \emptyset John: {Alice \rightarrow Mon, Bob \rightarrow Tue}

John: Argh, I wanted to have both meetings in one day :-(Let's make them change their minds...

 $\begin{array}{l} \mathsf{John} \to \mathsf{Bob}:\\ \mathsf{Nogood}(\{\mathsf{Bob} \to \mathsf{Tue}, \mathsf{Alice} \to \mathsf{Mon}\}) \end{array}$

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Alice: \varnothing Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Alice: \varnothing Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Alice: \varnothing Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Bob: John told me that the meeting cannot happen on Tuesday if Alice opts for Monday. Let's try Thursday then...

 $Bob \rightarrow John:$ Ok?(Bob \rightarrow Thu)

Alice: \varnothing Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon, Bob \rightarrow Thu}

Alice: Bob, why are you so curious?

Alice \rightarrow Bob: Ok?(Alice \rightarrow Mon)

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon, Bob \rightarrow Thu}

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Alice: \varnothing Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Bob: I have run out of options. It's up to Alice now...

 $\mathsf{Bob} \to \mathsf{Alice}:$ $\mathsf{Nogood}(\{\mathsf{Alice} \to \mathsf{Mon}\})$

Alice: Ø

John: {Alice \rightarrow Mon}

Alice: I have one more option, let's try Thursday.

Alice \rightarrow Bob, John: Ok?({Alice \rightarrow Thu})

Alice: \emptyset Bob: {Alice \rightarrow Thu} John: {Alice \rightarrow Thu}

 $\label{eq:alice: optimal of the set of the$

John: Finally. Thursday seems like a viable option.

Alice: \emptyset Bob: {Alice \rightarrow Thu} John: {Alice \rightarrow Thu, Bob \rightarrow Thu}

EXAMPLE