
DISTRIBUTED CONSTRAINT OPTIMIZATION

AE4M36MAS - Multiagent systems



ASSIGNMENT



n-Queens problem in a distributed way

n queens from a n × n world had

a serious dispute:

� They don’t want to know of each

other (i.e. no queen wants to

have any other in her line of sight)

� They don’t talk to each other

except for few formal messages

Ok? Nogood AddLink

Help them to find their place in the

world!

3/48



n-Queens problem in a distributed way

n queens from a n × n world had

a serious dispute:

� They don’t want to know of each

other (i.e. no queen wants to

have any other in her line of sight)

� They don’t talk to each other

except for few formal messages

Ok? Nogood AddLink

Help them to find their place in the

world!

3/48



n-Queens problem in a distributed way

n queens from a n × n world had

a serious dispute:

� They don’t want to know of each

other (i.e. no queen wants to

have any other in her line of sight)

� They don’t talk to each other

except for few formal messages

Ok? Nogood AddLink

Help them to find their place in the

world!

3/48



n-Queens problem in a distributed way

n queens from a n × n world had

a serious dispute:

� They don’t want to know of each

other (i.e. no queen wants to

have any other in her line of sight)

� They don’t talk to each other

except for few formal messages

Ok? Nogood AddLink

Help them to find their place in the

world!

3/48



n-Queens problem in a distributed way

Every agent controls one queen and decides about her position

within its row.

In the end, one of the following has to happen:

� One of the agents reports that no solutions exists

� Each queen reports her position in her row (i.e. a column in

which it is located)

↑ of course correctly ;-)

4/48



n-Queens problem in a distributed way

Any asynchronous and distributed solution is acceptable

(e.g. ABT).

→ No centralized knowledge allowed!

→ No synchonization!

→ No hardcoded solutions!

5/48



n-Queens problem in a distributed way

Total: 12 points

� Solve 3× 3 chessboard problem with 3 queens (3 points)

� Solve 4× 4 chessboard problem with 4 queens (2 points)

� Solve 8× 8 chessboard problem with 8 queens (2 points)

� Solve 12× 12 chessboard problem with 12 queens (3 points)

6/48



n-Queens problem in a distributed way

Guaranteed termination detection (1 point)

� How to detect quiescence in an algorithmic way?

� You may want to get inspired by other DCSP/DCOP

algorithms.

Quiescence should be discovered using local knowledge only.

→ Sending whole solution to a single agent for verification

is not an option!

7/48



n-Queens problem in a distributed way

Report (1 point)

� How is the n-queens problem modeled as a DCSP? (variables,

domains, constraints, agents)

� How is the ABT algorithm customized for the n-queens

problem?

� How do you determine priorities between agents?

� How do you detect that the search has terminated?

8/48



REVISION



Distributed CSP

� X = {x1, . . . , xn} — set of variables to assign

� D = {D1, . . . ,Dn} — set of domains (xi ∈ Di )

� C = {C1, . . . ,Cm} — set of constraints

� A = {A1, . . . ,Ak} — set of agents

10/48



Distributed CSP

Agent i should come up with an assignment for his variable xi in a

distributed way.

Tuple (x1, . . . , xn) should satisfy all the constraints.

11/48



Asynchronous backtracking

Agents asynchronously decide about their variable and

communicate their decisions.

� Ok? asks lower priority subscribers whether current

assignment is okay for them

� Nogood notifies one higher priority agent that he must take

some action — otherwise a solution will not be found

� AddLink represents the subscription for a variable of a higher

priority agent (when I am asked to check something I cannot

check at the moment)

12/48



Asynchronous backtracking

Agents asynchronously decide about their variable and

communicate their decisions.

� Ok? asks lower priority subscribers whether current

assignment is okay for them

� Nogood notifies one higher priority agent that he must take

some action — otherwise a solution will not be found

� AddLink represents the subscription for a variable of a higher

priority agent (when I am asked to check something I cannot

check at the moment)

12/48



Asynchronous backtracking

Agents asynchronously decide about their variable and

communicate their decisions.

� Ok? asks lower priority subscribers whether current

assignment is okay for them

� Nogood notifies one higher priority agent that he must take

some action — otherwise a solution will not be found

� AddLink represents the subscription for a variable of a higher

priority agent (when I am asked to check something I cannot

check at the moment)

12/48



Asynchronous backtracking

Agents asynchronously decide about their variable and

communicate their decisions.

� Ok? asks lower priority subscribers whether current

assignment is okay for them

� Nogood notifies one higher priority agent that he must take

some action — otherwise a solution will not be found

� AddLink represents the subscription for a variable of a higher

priority agent (when I am asked to check something I cannot

check at the moment)

12/48



Asynchronous backtracking

Choose

value

Change

value

possible

Send Ok?

Receive

Add i → j

to AGView

Ok?(i → j)

Check

AGView

ok

constraint violated

Generate

nogood n

impossible

n is empty

Broadcast

NoSolution

yes
i ← least priority agent from n

no

Send Nogood(n) to i

Remove assignment

for i from AGView

n matches

AGView

Nogood(n)

Store n &

Update AGView by n &

Request links

yesIgnore n &

Reply Ok?

no

Add link i → j

Reply Ok?(i → v)

AddLink(i → j)

13/48



DISTRIBUTED OPTIMIZATION



What we had so far?

xi xj

◦ ◦ T

◦ • F

• ◦ F

• • T x1

x2 x3

x4

Ck : Di × Dj → {T,F}

15/48



What we have in DCOPs?

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0 x1

x2 x3

x4

Ck : Di × Dj → N0

16/48



DCOPs

� X = {x1, . . . , xn} — set of variables to assign

� D = {D1, . . . ,Dn} — set of domains (xi ∈ Di )

� C = {C1, . . . ,Cm} — set of constraints

� A = {A1, . . . ,Ak} — set of agents

Goal

min
x

∑
Ci∈C

Ci (x)

17/48



Branch & Bound

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

18/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB =∞

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

19/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB =∞
Agent 2: x2 = ◦
LB = 1, UB =∞

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

20/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB =∞
Agent 2: x2 = ◦
LB = 1, UB =∞
Agent 3: x3 = ◦
LB = 3, UB =∞

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

21/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB = 4

Agent 2: x2 = ◦
LB = 1, UB = 4

Agent 3: x3 = ◦
LB = 3, UB = 4

Agent 4: x4 = ◦
LB = 4, UB = 4

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

22/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB = 4

Agent 2: x2 = ◦
LB = 1, UB = 4

Agent 3: x3 = ◦
LB = 3, UB = 4

Agent 4: x4 = •
LB = 5, UB = 4

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

23/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB = 4

Agent 2: x2 = ◦
LB = 1, UB = 4

Agent 3: x3 = •
LB = 5, UB = 4

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

24/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB = 4

Agent 2: x2 = •
LB = 2, UB = 4

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

25/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB = 4

Agent 2: x2 = •
LB = 2, UB = 4

Agent 3: x3 = ◦
LB = 5, UB = 4

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

26/48



Branch & Bound

Agent 1: x1 = ◦
LB = 0, UB = 4

Agent 2: x2 = •
LB = 2, UB = 4

x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

27/48



Branch & Bound

Agent 1: x1 = •
LB = 0, UB = 4

... etc ...

LB=UB

→ Solution found
x1

x2 x3

x4

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0

28/48



Branch & Bound

Why we do not like such an approach in MAS?

29/48



Branch & Bound

Why we do not like such an approach in MAS?

→ We need all agents to take decisions simulataneously!

30/48



Opportunistic Best-first Search

1. Introduce a hierarchy

between agents

DFS tree (back edges are

dashed)

x2

x3 x4

x1

31/48



Opportunistic Best-first Search

Let x1 = ◦.

Question

It’s Christmas time! Assume

that you can get any informa-

tion about “subtrees” rooted in

x3 and x4 at no cost.

What is the optimal assignment

for x2?

x2

x3 x4

x1

32/48



Opportunistic Best-first Search

Let x1 = ◦.

Question

What is the optimal assignment

for x2?

arg min
v ∈{◦,•}

[
C (x1 = ◦, x2 = v)

+ OPTx3(x1 = ◦, x2 = v)

+ OPTx4(x1 = ◦, x2 = v)
]

x2

x3 x4

x1

33/48



Opportunistic Best-first Search

More generally:

arg min
v∈Di

δctx(v) +
∑

c∈child(i)

OPTc (ctx ∪ {xi = v})


where
ctx current context (assignment for i ’s ancestors)

(~agent view)

δctx(v) penalty for constraints involving xi and some ancestor

of i when xi = v

OPTc(ctx) optimal solution of the subtree rooted in c in the given

context

34/48



Opportunistic Best-first Search

There is a problem — we do not know OPTc(ctx)

(otherwise we wouldn’t be here right now ;-))

Inspire yourself in Branch & Bound algorithm!

→ Keep bounds on solutions of subtrees

(given my assignment)

Solution: Take the opportunity and pick the value that may lead to

the best solution! (i.e. the one with minimal lower bound)

LB(v) = δctx(v) +
∑

c∈child(i)

lbc(v)

35/48



Opportunistic Best-first Search

There is a problem — we do not know OPTc(ctx)

(otherwise we wouldn’t be here right now ;-))

Inspire yourself in Branch & Bound algorithm!

→ Keep bounds on solutions of subtrees

(given my assignment)

Solution: Take the opportunity and pick the value that may lead to

the best solution! (i.e. the one with minimal lower bound)

LB(v) = δctx(v) +
∑

c∈child(i)

lbc(v)

35/48



Opportunistic Best-first Search

There is a problem — we do not know OPTc(ctx)

(otherwise we wouldn’t be here right now ;-))

Inspire yourself in Branch & Bound algorithm!

→ Keep bounds on solutions of subtrees

(given my assignment)

Solution: Take the opportunity and pick the value that may lead to

the best solution! (i.e. the one with minimal lower bound)

LB(v) = δctx(v) +
∑

c∈child(i)

lbc(v)

35/48



What we need to store?

For every my assignment:
◦ •

36/48



What we need to store?

For every my assignment:

For every child of mine:

◦ ◦ • •
x3 x4 x3 x4

37/48



What we need to store?

For every my assignment:

For every child of mine:

Store bounds:

◦ ◦ • •
x3 x4 x3 x4

lbc(v) 0 0 0 0

ubc(v) ∞ ∞ ∞ ∞

38/48



What we need to store?

For every my assignment:

For every child of mine:

Store bounds:

Context:

◦ ◦ • •
x3 x4 x3 x4

lbc(v) 0 0 0 0

ubc(v) ∞ ∞ ∞ ∞

x
1

=
◦

x
1

=
◦

x
1

=
◦

x
1

=
◦

39/48



Challenge

It’s pre-2005 era. A complete asynchronous distributed algorithm

for solving DCOPs is non-existent...

It’s your turn to make ADOPT work!
x2

x3 x4

x1

40/48



ADOPT messages

� value?

Agent notifies ancestors that he changed his value

(only those interested!)

� cost!

Agent notifies his parent about bounds on the solution of his

subtree

Include context! Otherwise the whole system goes out of sync

� solution!

Broadcasted by root agent in the DFS tree when detecting

LB=UB.

� threshold! (optional)

Sent to children not to make them swap their value too often.

41/48



ADOPT messages

� value?

Agent notifies ancestors that he changed his value

(only those interested!)

� cost!

Agent notifies his parent about bounds on the solution of his

subtree

Include context! Otherwise the whole system goes out of sync

� solution!

Broadcasted by root agent in the DFS tree when detecting

LB=UB.

� threshold! (optional)

Sent to children not to make them swap their value too often.

41/48



ADOPT messages

� value?

Agent notifies ancestors that he changed his value

(only those interested!)

� cost!

Agent notifies his parent about bounds on the solution of his

subtree

Include context! Otherwise the whole system goes out of sync

� solution!

Broadcasted by root agent in the DFS tree when detecting

LB=UB.

� threshold! (optional)

Sent to children not to make them swap their value too often.

41/48



ADOPT messages

� value?

Agent notifies ancestors that he changed his value

(only those interested!)

� cost!

Agent notifies his parent about bounds on the solution of his

subtree

Include context! Otherwise the whole system goes out of sync

� solution!

Broadcasted by root agent in the DFS tree when detecting

LB=UB.

� threshold! (optional)

Sent to children not to make them swap their value too often.

41/48



ADOPT messages

� value?

Agent notifies ancestors that he changed his value

(only those interested!)

� cost!

Agent notifies his parent about bounds on the solution of his

subtree

Include context! Otherwise the whole system goes out of sync

� solution!

Broadcasted by root agent in the DFS tree when detecting

LB=UB.

� threshold! (optional)

Sent to children not to make them swap their value too often.

41/48



ADOPT messages

� value?

Agent notifies ancestors that he changed his value

(only those interested!)

� cost!

Agent notifies his parent about bounds on the solution of his

subtree

Include context! Otherwise the whole system goes out of sync

� solution!

Broadcasted by root agent in the DFS tree when detecting

LB=UB.

� threshold! (optional)

Sent to children not to make them swap their value too often.

41/48



ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT

backtracks? (compared to ABT / synchronous BnB)

� ABT backtrack when it has no other option

(i.e. inconsistency has been proven)

� BnB backtracks when suboptimality is detected

(i.e. once LB ≥ UB)

� ADOPT keeps informing parent about solution bounds

(backtrack may happen due to the opportunity to change)

42/48



ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT

backtracks? (compared to ABT / synchronous BnB)

� ABT backtrack when it has no other option

(i.e. inconsistency has been proven)

� BnB backtracks when suboptimality is detected

(i.e. once LB ≥ UB)

� ADOPT keeps informing parent about solution bounds

(backtrack may happen due to the opportunity to change)

42/48



ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT

backtracks? (compared to ABT / synchronous BnB)

� ABT backtrack when it has no other option

(i.e. inconsistency has been proven)

� BnB backtracks when suboptimality is detected

(i.e. once LB ≥ UB)

� ADOPT keeps informing parent about solution bounds

(backtrack may happen due to the opportunity to change)

42/48



ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT

backtracks? (compared to ABT / synchronous BnB)

� ABT backtrack when it has no other option

(i.e. inconsistency has been proven)

� BnB backtracks when suboptimality is detected

(i.e. once LB ≥ UB)

� ADOPT keeps informing parent about solution bounds

(backtrack may happen due to the opportunity to change)

42/48



Example

xi xj

◦ ◦ 1

◦ • 2

• ◦ 2

• • 0 x1

x2 x3

x4

43/48



Approximate algorithms

When we need solution fast and with little effort.

→ Optimality guarantees are sacrificed

→ Much better scalability

Deciding just by reasoning about the nearest neighborhood

i.e. constraints an agent is involved in — no idea of a global picture

44/48



Approximate algorithms

At least some coordination is needed.

x1 x2

x3x4

Graph coloring — each agent can decide to be either green or red.

Question: What is the best choice for each of the agents?

45/48



Approximate algorithms

At least some coordination is needed.

x1 x2

x3x4

Graph coloring — each agent can decide to be either green or red.

46/48



Approximate algorithms

Recall of mining in Jason. How to solve this issue?

� Randomize to decide whether an agent is going to act.

→ DSA-1 algorithm

� Negotiate with neighbors.

→ MGM-1 algorithm

47/48



Approximate algorithms

Recall of mining in Jason. How to solve this issue?

� Randomize to decide whether an agent is going to act.

→ DSA-1 algorithm

� Negotiate with neighbors.

→ MGM-1 algorithm

47/48



Approximate algorithms

Recall of mining in Jason. How to solve this issue?

� Randomize to decide whether an agent is going to act.

→ DSA-1 algorithm

� Negotiate with neighbors.

→ MGM-1 algorithm

47/48



DSA-1 — Distributed stochastic algorithm

Toss a coin to decide whether:

� I will do the greedy step

� I will wait for others to do something

Keep exchanging individual assignments.

48/48


	Assignment
	n-Queens problem in a distributed way

	Revision
	Distributed CSP
	Asynchronous backtracking

	Distributed optimization
	What we had so far?
	What we have in DCOPs?
	DCOPs
	Branch & Bound
	Opportunistic Best-first Search
	What we need to store?
	Challenge
	ADOPT messages
	ADOPT properties
	Example
	Approximate algorithms
	DSA-1 — Distributed stochastic algorithm


