DISTRIBUTED CONSTRAINT OPTIMIZATION

AE4M36MAS - Multiagent systems

ASSIGNMENT
n queens from a $n \times n$ world had a serious dispute:
n queens from a $n \times n$ world had
a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
n queens from a $n \times n$ world had
a serious dispute:
- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Ok? Nogood AddLink

n -Queens problem in a distributed way

n queens from a $n \times n$ world had
a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Ok? Nogood AddLink

Help them to find their place in the world!

n-Queens problem in a distributed way

Every agent controls one queen and decides about her position within its row.

In the end, one of the following has to happen:

- One of the agents reports that no solutions exists
- Each queen reports her position in her row (i.e. a column in which it is located)
\uparrow of course correctly ;-)

Any asynchronous and distributed solution is acceptable (e.g. ABT).
\rightarrow No centralized knowledge allowed!
\rightarrow No synchonization!
\rightarrow No hardcoded solutions!

Total: 12 points

- Solve 3×3 chessboard problem with 3 queens (3 points)
- Solve 4×4 chessboard problem with 4 queens (2 points)
- Solve 8×8 chessboard problem with 8 queens (2 points)
- Solve 12×12 chessboard problem with 12 queens (3 points)

n-Queens problem in a distributed way

Guaranteed termination detection (1 point)

- How to detect quiescence in an algorithmic way?
- You may want to get inspired by other DCSP/DCOP algorithms.

Quiescence should be discovered using local knowledge only.
\rightarrow Sending whole solution to a single agent for verification is not an option!

Report (1 point)

- How is the n -queens problem modeled as a DCSP? (variables, domains, constraints, agents)
- How is the $A B T$ algorithm customized for the n-queens problem?
- How do you determine priorities between agents?
- How do you detect that the search has terminated?

REVISION

Distributed CSP

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign
- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints
- $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ - set of agents

Distributed CSP

Agent i should come up with an assignment for his variable x_{i} in a distributed way.

Tuple $\left(x_{1}, \ldots, x_{n}\right)$ should satisfy all the constraints.

Asynchronous backtracking

Agents asynchronously decide about their variable and communicate their decisions.

Asynchronous backtracking

Agents asynchronously decide about their variable and communicate their decisions.

- Ok? asks lower priority subscribers whether current assignment is okay for them

Asynchronous backtracking

Agents asynchronously decide about their variable and communicate their decisions.

- Ok? asks lower priority subscribers whether current assignment is okay for them
- Nogood notifies one higher priority agent that he must take some action - otherwise a solution will not be found

Asynchronous backtracking

Agents asynchronously decide about their variable and communicate their decisions.

- Ok? asks lower priority subscribers whether current assignment is okay for them
- Nogood notifies one higher priority agent that he must take some action - otherwise a solution will not be found
- AddLink represents the subscription for a variable of a higher priority agent (when I am asked to check something I cannot check at the moment)

Asynchronous backtracking

DISTRIBUTED OPTIMIZATION

What we had so far?

$$
C_{k}: D_{i} \times D_{j} \rightarrow\{\mathrm{~T}, \mathrm{~F}\}
$$

What we have in DCOPs?

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

$$
C_{k}: D_{i} \times D_{j} \rightarrow \mathbb{N}_{0}
$$

- $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign
- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints
- $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ - set of agents

Goal

$$
\min _{\mathrm{x}} \sum_{C_{i} \in \mathcal{C}} C_{i}(\mathbf{x})
$$

Branch \& Bound

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=\infty$

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=\infty$
Agent 2: $x_{2}=0$
$L B=1, U B=\infty$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=\infty$
Agent 2: $x_{2}=0$
$L B=1, U B=\infty$
Agent 3: $x_{3}=0$
$L B=3, U B=\infty$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=4$
Agent 2: $x_{2}=0$
$L B=1, U B=4$
Agent 3: $x_{3}=0$
$L B=3, U B=4$
Agent 4: $x_{4}=0$
$L B=4, U B=4$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=4$
Agent 2: $x_{2}=0$
$L B=1, U B=4$
Agent 3: $x_{3}=0$
$L B=3, U B=4$
Agent 4: $x_{4}=\bullet$
$L B=5, U B=4$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=4$
Agent 2: $x_{2}=0$
$L B=1, U B=4$
Agent 3: $x_{3}=\bullet$
$L B=5, U B=4$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=4$
Agent 2: $x_{2}=\bullet$
$L B=2, U B=4$

Branch \& Bound

Agent 1: $x_{1}=0$
$L B=0, U B=4$
Agent 2: $x_{2}=\bullet$
$L B=2, U B=4$
Agent 3: $x_{3}=0$
$L B=5, U B=4$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=0$ $L B=0, U B=4$
Agent 2: $x_{2}=\bullet$
$L B=2, U B=4$

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Branch \& Bound

Agent 1: $x_{1}=\bullet$
$L B=0, U B=4$
... etc ...
$\mathrm{LB}=\mathrm{UB}$
\rightarrow Solution found

Branch \& Bound

Why we do not like such an approach in MAS?

Branch \& Bound

Why we do not like such an approach in MAS?
\rightarrow We need all agents to take decisions simulataneously!

Opportunistic Best-first Search

1. Introduce a hierarchy between agents

DFS tree (back edges are dashed)

Opportunistic Best-first Search

Let $x_{1}=0$.

Question

It's Christmas time! Assume that you can get any information about "subtrees" rooted in x_{3} and x_{4} at no cost.

What is the optimal assignment for x_{2} ?

Opportunistic Best-first Search

Let $x_{1}=0$.

Question

What is the optimal assignment for x_{2} ?

$$
\begin{aligned}
& \underset{v \in\{0, \bullet\}}{\arg \min }\left[C\left(x_{1}=0, x_{2}=v\right)\right. \\
& \quad+O P T_{x_{3}}\left(x_{1}=0, x_{2}=v\right) \\
& \left.\quad+O P T_{x_{4}}\left(x_{1}=0, x_{2}=v\right)\right]
\end{aligned}
$$

Opportunistic Best-first Search

More generally:

$$
\underset{v \in D_{i}}{\arg \min }\left[\delta_{c t x}(v)+\sum_{c \in \operatorname{child}(i)} O P T_{c}\left(c t x \cup\left\{x_{i}=v\right\}\right)\right]
$$

where
ctx
current context (assignment for i's ancestors) (~agent view)
$\delta_{c t x}(v)$ penalty for constraints involving x_{i} and some ancestor of i when $x_{i}=v$
$O P T_{c}(c t x)$ optimal solution of the subtree rooted in c in the given context

Opportunistic Best-first Search

There is a problem - we do not know $O P T_{c}(c t x)$ (otherwise we wouldn't be here right now ;-))

Inspire yourself in Branch \& Bound algorithm!

Opportunistic Best-first Search

There is a problem - we do not know $O P T_{c}(c t x)$
(otherwise we wouldn't be here right now ;-))
Inspire yourself in Branch \& Bound algorithm!
\rightarrow Keep bounds on solutions of subtrees
(given my assignment)

Opportunistic Best-first Search

There is a problem - we do not know $O P T_{c}(c t x)$
(otherwise we wouldn't be here right now ;-))
Inspire yourself in Branch \& Bound algorithm!
\rightarrow Keep bounds on solutions of subtrees (given my assignment)

Solution: Take the opportunity and pick the value that may lead to the best solution! (i.e. the one with minimal lower bound)

$$
L B(v)=\delta_{c t x}(v)+\sum_{c \in \operatorname{child}(i)} l b_{c}(v)
$$

What we need to store?

For every my assignment:

What we need to store?

For every my assignment:
For every child of mine:

\circ	\circ	\bullet	\bullet
x_{3}	x_{4}	x_{3}	x_{4}

What we need to store?

For every my assignment:
For every child of mine:
Store bounds:

	\circ	\circ	\bullet	\bullet
	x_{3}	x_{4}	x_{3}	x_{4}
$l b_{c}(v)$	0	0	0	0
$u b_{c}(v)$	∞	∞	∞	∞

What we need to store?

For every my assignment:
For every child of mine:
Store bounds:

Context:

	\circ	\circ	\bullet	\bullet			
	x_{3}	x_{4}	x_{3}	x_{4}			
$l b_{c}(v)$	0	0	0	0			
$u b_{c}(v)$	∞	∞	∞	∞			
	\searrow	\searrow	\searrow	\searrow			
	\ddots	$\\|$	$\\|$	$\\|$			
	\bullet	\circ	\circ	\circ			

Challenge

It's pre-2005 era. A complete asynchronous distributed algorithm for solving DCOPs is non-existent...

It's your turn to make ADOPT work!

ADOPT messages

- value?

Agent notifies ancestors that he changed his value (only those interested!)

ADOPT messages

- value?

Agent notifies ancestors that he changed his value (only those interested!)

- cost!

Agent notifies his parent about bounds on the solution of his subtree

ADOPT messages

- value?

Agent notifies ancestors that he changed his value (only those interested!)

- cost!

Agent notifies his parent about bounds on the solution of his subtree

Include context! Otherwise the whole system goes out of sync

ADOPT messages

- value?

Agent notifies ancestors that he changed his value (only those interested!)

- cost!

Agent notifies his parent about bounds on the solution of his subtree

Include context! Otherwise the whole system goes out of sync

- solution!

Broadcasted by root agent in the DFS tree when detecting $\mathrm{LB}=\mathrm{UB}$.

ADOPT messages

- value?

Agent notifies ancestors that he changed his value (only those interested!)

- cost!

Agent notifies his parent about bounds on the solution of his subtree

Include context! Otherwise the whole system goes out of sync

- solution!

Broadcasted by root agent in the DFS tree when detecting $\mathrm{LB}=\mathrm{UB}$.

- threshold! (optional)

Sent to children not to make them swap their value too often.

ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

- ABT backtrack when it has no other option (i.e. inconsistency has been proven)

ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

- ABT backtrack when it has no other option (i.e. inconsistency has been proven)
- BnB backtracks when suboptimality is detected (i.e. once LB $\geq \mathrm{UB}$)

ADOPT properties

Optimal and asynchronous algorithm for solving DCOPs.

Question: What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

- ABT backtrack when it has no other option (i.e. inconsistency has been proven)
- BnB backtracks when suboptimality is detected (i.e. once $L B \geq U B$)
- ADOPT keeps informing parent about solution bounds (backtrack may happen due to the opportunity to change)

Example

x_{i}	x_{j}	
\circ	\circ	1
\circ	\bullet	2
\bullet	\circ	2
\bullet	\bullet	0

Approximate algorithms

When we need solution fast and with little effort.
\rightarrow Optimality guarantees are sacrificed
\rightarrow Much better scalability

Deciding just by reasoning about the nearest neighborhood
i.e. constraints an agent is involved in - no idea of a global picture

Approximate algorithms

At least some coordination is needed.

Graph coloring - each agent can decide to be either green or red.
Question: What is the best choice for each of the agents?

Approximate algorithms

At least some coordination is needed.

Graph coloring — each agent can decide to be either green or red.

Approximate algorithms

Recall of mining in Jason. How to solve this issue?

Approximate algorithms

Recall of mining in Jason. How to solve this issue?

- Randomize to decide whether an agent is going to act.
\rightarrow DSA-1 algorithm

Approximate algorithms

Recall of mining in Jason. How to solve this issue?

- Randomize to decide whether an agent is going to act.
\rightarrow DSA-1 algorithm
- Negotiate with neighbors.
\rightarrow MGM-1 algorithm

DSA-1 — Distributed stochastic algorithm

Toss a coin to decide whether:

- I will do the greedy step
- I will wait for others to do something

Keep exchanging individual assignments.

