# DISTRIBUTED CONSTRAINT OPTIMIZATION

AE4M36MAS - Multiagent systems

### ASSIGNMENT

- n queens from a  $n \times n$  world had
- a serious dispute:

*n* queens from a  $n \times n$  world had a serious dispute:

• They don't want to know of each other (i.e. no queen wants to have any other in her line of sight) *n* queens from a  $n \times n$  world had a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Ok? Nogood AddLink

*n* queens from a  $n \times n$  world had a serious dispute:

- They don't want to know of each other (i.e. no queen wants to have any other in her line of sight)
- They don't talk to each other except for few formal messages Ok? Nogood AddLink

Help them to find their place in the world!



Every agent controls **one queen** and decides about her position within its row.

In the end, one of the following has to happen:

- One of the agents reports that no solutions exists
- Each queen reports her position in her row (i.e. a column in which it is located)

 $\uparrow$  of course correctly ;-)

# Any **asynchronous** and **distributed** solution is acceptable (e.g. ABT).

- $\rightarrow$  No centralized knowledge allowed!
- $\rightarrow$  No synchonization!
- $\rightarrow$  No hardcoded solutions!

### Total: 12 points

- Solve  $3 \times 3$  chessboard problem with 3 queens (3 points)
- Solve  $4 \times 4$  chessboard problem with 4 queens (2 points)
- Solve  $8 \times 8$  chessboard problem with 8 queens (2 points)
- Solve  $12 \times 12$  chessboard problem with 12 queens (3 points)

Guaranteed termination detection (1 point)

- How to detect *quiescence* in an algorithmic way?
- You may want to get inspired by other DCSP/DCOP algorithms.

Quiescence should be discovered using local knowledge only.

 $\rightarrow$  Sending whole solution to a single agent for verification is not an option!

### Report (1 point)

- How is the n-queens problem modeled as a DCSP? (variables, domains, constraints, agents)
- How is the ABT algorithm customized for the n-queens problem?
- How do you determine priorities between agents?
- How do you detect that the search has terminated?

# REVISION

- $\mathcal{X} = \{x_1, \dots, x_n\}$  set of *variables* to assign
- $\mathcal{D} = \{D_1, \dots, D_n\}$  set of domains  $(x_i \in D_i)$
- $C = \{C_1, \ldots, C_m\}$  set of *constraints*
- $\mathcal{A} = \{A_1, \dots, A_k\}$  set of *agents*

# Agent *i* should come up with an assignment for his variable $x_i$ in a **distributed** way.

Tuple  $(x_1, \ldots, x_n)$  should satisfy all the constraints.

• **Ok?** asks lower priority subscribers whether current assignment is okay for them

- **Ok?** asks lower priority subscribers whether current assignment is okay for them
- **Nogood** notifies one higher priority agent that he must take some action otherwise a solution will not be found

- **Ok?** asks lower priority subscribers whether current assignment is okay for them
- **Nogood** notifies one higher priority agent that he must take some action otherwise a solution will not be found
- AddLink represents the subscription for a variable of a higher priority agent (when I am asked to check something I cannot check at the moment)

# Asynchronous backtracking



# DISTRIBUTED OPTIMIZATION

### What we had so far?



 $C_k: D_i \times D_j \to \{\mathsf{T},\mathsf{F}\}$ 

# What we have in DCOPs?



$$C_k: D_i \times D_j \to \mathbb{N}_0$$

•  $\mathcal{X} = \{x_1, \dots, x_n\}$  — set of *variables* to assign

• 
$$\mathcal{D} = \{D_1, \dots, D_n\}$$
 — set of domains  $(x_i \in D_i)$ 

• 
$$C = \{C_1, \ldots, C_m\}$$
 — set of *constraints*

• 
$$\mathcal{A} = \{A_1, \dots, A_k\}$$
 — set of *agents*

Goal

$$\min_{\mathbf{x}}\sum_{C_i\in\mathcal{C}}C_i(\mathbf{x})$$











Agent 1:  $x_1 = \circ$   $LB = 0, UB = \infty$ Agent 2:  $x_2 = \circ$  $LB = 1, UB = \infty$ 





Agent 1:  $x_1 = \circ$   $LB = 0, UB = \infty$ Agent 2:  $x_2 = \circ$   $LB = 1, UB = \infty$ Agent 3:  $x_3 = \circ$  $LB = 3, UB = \infty$ 





Agent 1:  $x_1 = \circ$  LB = 0, UB = 4Agent 2:  $x_2 = \circ$  LB = 1, UB = 4Agent 3:  $x_3 = \circ$  LB = 3, UB = 4Agent 4:  $x_4 = \circ$ LB = 4, UB = 4





Agent 1:  $x_1 = \circ$  LB = 0, UB = 4Agent 2:  $x_2 = \circ$  LB = 1, UB = 4Agent 3:  $x_3 = \circ$  LB = 3, UB = 4Agent 4:  $x_4 = \bullet$ LB = 5, UB = 4





Agent 1:  $x_1 = \circ$  LB = 0, UB = 4Agent 2:  $x_2 = \circ$  LB = 1, UB = 4Agent 3:  $x_3 = \bullet$ LB = 5, UB = 4











Agent 1:  $x_1 = \circ$  LB = 0, UB = 4Agent 2:  $x_2 = \bullet$  LB = 2, UB = 4Agent 3:  $x_3 = \circ$ LB = 5, UB = 4













#### Why we do not like such an approach in MAS?

### Why we **do not like** such an approach in MAS? $\rightarrow$ We need all agents to take decisions **simulataneously**!

# Opportunistic Best-first Search

1. Introduce a hierarchy between agents

DFS tree (back edges are dashed)



Let  $x_1 = \circ$ .

#### Question

It's Christmas time! Assume that you can get any information about "subtrees" rooted in  $x_3$  and  $x_4$  at no cost.

What is the optimal assignment for  $x_2$ ?



Let  $x_1 = \circ$ .

Question What is the optimal assignment for  $x_2$ ?

$$\underset{v \in \{\circ,\bullet\}}{\operatorname{arg\,min}} \left[ C(x_1 = \circ, x_2 = v) + OPT_{x_3}(x_1 = \circ, x_2 = v) + OPT_{x_4}(x_1 = \circ, x_2 = v) \right]$$



More generally:

$$\underset{v \in D_{i}}{\operatorname{arg\,min}} \left[ \delta_{ctx}(v) + \sum_{c \in child(i)} OPT_{c}(ctx \cup \{x_{i} = v\}) \right]$$

where

- $\delta_{ctx}(v)$  penalty for constraints involving  $x_i$  and some ancestor of *i* when  $x_i = v$
- $OPT_c(ctx)$  optimal solution of the subtree rooted in c in the given context

There is a problem — we do not know  $OPT_c(ctx)$ (otherwise we wouldn't be here right now ;-))

Inspire yourself in Branch & Bound algorithm!

There is a problem — we do not know  $OPT_c(ctx)$ (otherwise we wouldn't be here right now ;-))

Inspire yourself in Branch & Bound algorithm!

 $\rightarrow$  Keep bounds on solutions of subtrees (given my assignment)

There is a problem — we do not know  $OPT_c(ctx)$ (otherwise we wouldn't be here right now ;-))

Inspire yourself in Branch & Bound algorithm!  $\rightarrow$  Keep bounds on solutions of subtrees

(given my assignment)

*Solution:* Take the opportunity and pick the value that may lead to the best solution! (i.e. the one with minimal lower bound)

$$LB(v) = \delta_{ctx}(v) + \sum_{c \in child(i)} lb_c(v)$$

For every my assignment:



For every my assignment: For every child of mine:

| 0                     | 0          | ٠  | •          |
|-----------------------|------------|----|------------|
| <i>x</i> <sub>3</sub> | <i>x</i> 4 | Х3 | <i>X</i> 4 |

For every my assignment: For every child of mine:

Store bounds:

|           | 0          | 0          | ٠          | •          |
|-----------|------------|------------|------------|------------|
|           | <i>x</i> 3 | <i>X</i> 4 | <i>x</i> 3 | <i>X</i> 4 |
| $lb_c(v)$ | 0          | 0          | 0          | 0          |
| $ub_c(v)$ | $\infty$   | $\infty$   | $\infty$   | $\infty$   |

For every my assignment: For every child of mine: Store bounds:

Context:

|           | 0          | 0          | •         | •          |
|-----------|------------|------------|-----------|------------|
|           | <i>x</i> 3 | <i>X</i> 4 | X3        | <i>X</i> 4 |
| $lb_c(v)$ | 0          | 0          | 0         | 0          |
| $ub_c(v)$ | $\infty$   | $\infty$   | $\infty$  | $\infty$   |
|           | $x_1 = 0$  | $x_1 = 0$  | $x_1 = 0$ | $x_1 = 0$  |

It's pre-2005 era. A complete asynchronous distributed algorithm for solving DCOPs is non-existent...

It's your turn to make ADOPT work!



#### • value?

Agent notifies ancestors that he changed his value (only those interested!)

#### • value?

Agent notifies ancestors that he changed his value (only those interested!)

### • cost!

Agent notifies his parent about bounds on the solution of his subtree

#### • value?

Agent notifies ancestors that he changed his value (only those interested!)

### • cost!

Agent notifies his parent about bounds on the solution of his subtree

Include context! Otherwise the whole system goes out of sync

#### • value?

Agent notifies ancestors that he changed his value (only those interested!)

### • cost!

Agent notifies his parent about bounds on the solution of his subtree

Include context! Otherwise the whole system goes out of sync

#### • solution!

Broadcasted by root agent in the DFS tree when detecting LB=UB.

#### • value?

Agent notifies ancestors that he changed his value (only those interested!)

### • cost!

Agent notifies his parent about bounds on the solution of his subtree

Include context! Otherwise the whole system goes out of sync

#### • solution!

Broadcasted by root agent in the DFS tree when detecting LB=UB.

### • threshold! (optional)

Sent to children not to make them swap their value too often.

*Question:* What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

*Question:* What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

• ABT backtrack when it has no other option (i.e. inconsistency has been proven)

*Question:* What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

- ABT backtrack when it has no other option (i.e. inconsistency has been proven)
- BnB backtracks when suboptimality is detected (i.e. once LB  $\geq$  UB)

*Question:* What is the key difference in the way ADOPT backtracks? (compared to ABT / synchronous BnB)

- ABT backtrack when it has no other option (i.e. inconsistency has been proven)
- BnB backtracks when suboptimality is detected (i.e. once LB  $\geq$  UB)
- ADOPT keeps informing parent about solution bounds (backtrack may happen due to the **opportunity** to change)





When we need solution fast and with little effort.

- $\rightarrow$  Optimality guarantees are sacrificed
- $\rightarrow$  Much better scalability

Deciding just by reasoning about the **nearest neighborhood** i.e. constraints an agent is involved in — no idea of a global picture

# Approximate algorithms

#### At least some coordination is needed.



Graph coloring — each agent can decide to be either green or red. *Question:* What is the best choice for each of the agents?

# Approximate algorithms

At least some coordination is needed.



Graph coloring — each agent can decide to be either green or red.

#### Recall of mining in Jason. How to solve this issue?

Recall of mining in Jason. How to solve this issue?

• Randomize to decide whether an agent is going to act.  $\rightarrow$  DSA-1 algorithm Recall of mining in Jason. How to solve this issue?

- Randomize to decide whether an agent is going to act.  $\rightarrow$  DSA-1 algorithm
- Negotiate with neighbors.
  - $\rightarrow$  MGM-1 algorithm

# DSA-1 — Distributed stochastic algorithm

Toss a coin to decide whether:

- I will do the greedy step
- I will wait for others to do something

Keep exchanging individual assignments.

