#11: DCSP (AE4M36MAS tutorial)

- Tutorial time: 27 Nov 2012 @ 14:30
- Notes by: Jan Hrnčíř

1) DCSP Modelling

- **Definition of DCSP** (variables, domains, constraints, agents)
 - CSP + each variable owned by one agent
- Why DCSP?
 - Often problem instances come already distributed without a way to bring all the information together into one place (naturally distributed problems)
 - Additional individual goals of agents
 - privacy
 - individual interests / preferences
 - semi-cooperative agents
 - Additional limits/restrictions on communication between agents ... No trusted third party, privacy concerns
 - Costly to formalize constraints and preferences for all possible cases
 - However, distribution cannot increase efficiency

2) Preprocessing

- Filtering algorithm
 - Pseudocode (cf. Vidal)
 - each agent executes FILTERING()
 - Example of the map colouring problem with 3 agents
 - Can be used for preprocessing \rightarrow result
 - solution ... rarely (Vidal: Figure 2.4) ... trace the filtering algorithm
 - slight reduce of the domains ... usually (Figure 2.6) ... just say what is the solution
 - cannot reliably detect problems that do not have a solution (Vidal: Figure 2.5)

Figure 2.4: Filtering example. The agents start out with some prohibited colors as indicated by the black crosses. On the first step x_1 does his REVISE and eliminates the color gray from consideration. It then tells everyone else about this. Then x_2 does its revise and eliminates the color gray from its domain.

Figure 2.5: Example of a problem that does not have a solution and the filtering algorithm cannot that fact.

3) Search

Target Tracking

- Goal: In a big room, there are several targets to track. Every target must be tracked at least by one camera. A camera can be oriented to N/S/E/W
- Variables, domains: Camera with the domain of {N, S, E, W}
- Agents: cameras
- Constraints: At least one camera tracking each target which is situated between two cameras (binary).

Pseudocode of ABT (cf. Vidal)

- j ... name of an agent
- x_j ... current variable value of the agent

ABT on Target Tracking problem

- priority: the agent's fixed priority number. All agents are ordered.
- *local-view:* current values of other agents' variables.
- current-value: current value of agent's variable.
- *neighbors:* initially, the set of agents with whom agent shares a constraint.
- assumptions:
 - messages never lost, arrive in the same order as they were sent
- flow of messages.
 - $\circ \quad \mathsf{MaxPriority} \to \dots \mathsf{HandleOK?} \dots \to \mathsf{MinPriority}$
 - $\circ \quad \text{MaxPriority} \leftarrow \dots \text{HandleNoGood} \dots \leftarrow \text{MinPriority}$