Ant Colony Optimization Algorithms

- Construction heuristics
- How ants find shortest route
 - Stigmergy
- General ACO metaheuristic
- Ant System for TSP

Motivation

- **NP-hard problems** no algorithms that could solve large instances of these problems to optimality
 - ^o Discrete combinatory problems
- Approximate metods can find solutions of good quality in reasonable time
- Approximate metods
 - [°] Local search/optimization
 - Iteratively improves a complete solution (typically initialized at random) till it reaches some local optimum.
 - Construction algorithms
 - Build a solution making use of some problem-specific heuristic information
- Ant Colony Optimization (ACO) algorithms extend traditional construction heuristics with an ability to exploit experience gathered during the optimization process.

Construction Algorithms

• Build solutions to a problem under consideration in an incremental way starting with an empty initial solution and iteratively adding opportunely defined solution components without backtracking until a complete solution is obtained.

• Pros/Cons

- + fast, solutions of reasonable quality
- Solution may be far from optimum
- Generate only limited number of different solutions
- Decisions made at early stages reduce a set of possible steps at latter stages

Ant Algorithms: Biological Inspiration

- Inspired by behavior of an ant colony
 - [°] Social insects behave towards survival of the colony
 - [°] Simple individual behavior × complex behavior of a colony
- Ability to find the shortest path from the colony to the source of food and back using an **indirect communication via pheromone**
 - Write ants lay down pheromone on their way to food
 - **Read** ant detects pheromone (can sense different intensity) laid down by other ants and can choose a direction of the highest concentration of pheromone.
 - Emergence this simple behavior applied by the whole colony can lead to emergence of the shortest path.

Experiments with Real Ants

- **Deneuborg et al.** (ants *Linepithema humile*)
- Nest separated from food with a double-bridge
 - ° Both path of the same length
 - ° At the beginning there is no pheromone
 - After some time one of the alternatives gets dominant due to random fluctuations

Bridges with Different Branches

• Influence of random fluctuations is significantly reduced and majority of ants go for the shorter path in the end.

Example

Example

- In each step 30 new ants go from A to B, and 30 ants from E to D
 - All ants go with the same speed 1 s⁻¹
 - ° Each ant deposits down 1 unit of pheromone per 1 time unit

Stigmergy

- **Stigmergie** two individuals interact indirectly when one of them modifies the environment and the other responds to the new environment at a later time.
 - **Physically** by depositing a pheromone the ants modify the place they have visited.
 - **Locality of information** pheromone is "visible" only to ants that are in its close vicinity.
 - Autocatalytic behavior the more ants follow a trail, the more attractive that trail becomes for being followed.
 The process is thus characterized by a positive feedback loop, where the probability of a discrete path choice increases with the number of times the same path was chosen before
- **Pheromone evaporation** realizes forgetting, which prevents premature convergence to suboptimal solutions.

Real Ants Resume

- Almost blind
- Incapable of achieving complex tasks alone
- Capable of establishing shortest-route paths from their colony to feeding sources and back
- Use *stigmergic* communication via pheromone trails
- Follow existing pheromone trails with high probability

Artificial Ants

- Similarity with real ants:
 - ° Colony of cooperating ants
 - ° Pheromone trail and stigmergy
 - ° Probabilistic decision making, locality of the strategy
 - Prior information given by the problem specification
 - Local modification of states, induced by preceding ants
- Differences from real ants:
 - Discrete world
 - ° Inner states personal memory with already performed actions
 - ° Ants are not completely blind
 - Amount of deposited pheromone is a function of the quality of the solution
 - [°] Problem dependent timing of depositing the pheromone
 - ° Extras local optimization, backtracking

Ant Colony Optimization Metaheuristic

- ACO can be applied to any discrete optimization problem for which some solution construction mechanism can be conceived.
- Artificial ants are stochastic solution construction heuristics that probabilistically build a solution by iteratively adding solution components to partial solutions by taking into account
 - heuristic information on the problem instance being solved, if available,
 - (artificial) pheromone trails which change dynamically at run-time to reflect the agents' acquired search experience.
- **Stochastic component** allows generating a large number of different solutions.

General ACO metaheuristic

procedure ACO metaheuristics

ScheduleActivities

ManageAntActivity() EvaporatePheromone() // forgetting DaemonActions() {optional} // centralized actions local search, elitism

end ScheduleActivities

end ACO metaheuristics

Steps for implementing ACO

- Choose appropriate graph representation
- Define positive feedback
- Choose constructive heuristic
- Choose a model for constraint handling (*tabu* list at TSP)

Ant System (AS) for TSP

- **Problem:** Given *n* cities, the goal is to find the shortest path going through all cities and visiting each exactly once.
 - ° Consider complete graph.
 - ° d_{ij} is Euclidean distance from city *i* to city *j*
- Definition
 - *m* is the number of ants
 - ° $\tau_{ij}(t)$ is the intensity of pheromone on the link (i, j) in time t
 - ° η_{ij} is visibility (heuristic information) expressed by $1/d_{ij}$
 - ° (1- ρ) evaporation factor, ρ is constant for the whole opt. process
 - ° $tabu_k$ is dynamically growing vector of cities that have already been visited by k-th ant
 - **AS iteration** each ant adds one city to the built route
 - **AS cycle** composed of *n* iterations during which all ants complete their routes

AS: Pheromone Deposition

•
$$\tau_{ij}(t+n) = \rho \cdot \tau_{ij}(t) + \Delta \tau_{ij}$$

• $\Delta \tau_{ij} = \sum_k \Delta \tau_{ij}^k$

• $\Delta \tau_{ij}^{k} = \begin{pmatrix} Q/L_{k}, \text{ if } k \text{-th ant used the edge } (i, j) \\ 0, \text{ otherwise.} \end{cases}$

where

 $\Delta \tau_{ij}^{k}$ is the amount of pheromone deposited on the edge (i, j) by *k*-th ant within a time interval (t, t+n)

Q is a constant

 L_k is the length of the route constructed by k-th ant

 ρ must be smaller than 1, otherwise the pheromone would accumulate unboundedly (recommended is 0.5)

 $\tau_{ij}(0)$ is set to small positive values

AS: Probabilistic Decision Making

• Probability of adding a link *i*-*j* (where $j \in \{N - tabu_k\}$) into the route

$$p_{ij}^{k}(t) = \begin{cases} [\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta} / \sum_{l} [\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta} , \text{ if } j \in \{N - tabu_k\} \\ 0, \text{ otherwise.} \end{cases}$$

where

 $l \in \{N - tabu_k\}$

 α , β define relative importance of the pheromone and the visibility

- Probability is a compromise between
 - visibility that prefers closer cities to more distant ones and
 - [°] **intensity of pheromone** that prefers more frequently used edges.

AS: Cycle

• Ant-cycle:

- 1. Initialization
 - time: *t*=0
 - number of cycles: *NC*=0
 - pheromone: $\tau_{ij}(t) = c$
 - Initial positioning of *m* ants to *n* cities
- 2. Initialization of *tabu* lists
- 3. Ants' action
 - Each ant iteratively builds its route
 - Calculate length of the routes L_k for all ants $k \in (1, ..., m)$
 - update the shortest route found
 - Calculate $\Delta \tau_{ij}^{k}$ and update $\tau_{ij}(t+n)$
- 4. Increment discrete time
 - t = t + n, NC = NC + 1
- 5. If $(NC < NC_{max})$ then go ostep 2 else stop

AS: Elitism

- Intensity of pheromone is strengthened on edges that lie on the shortest path out of all generated paths
 - ^o Amount of added pheromone: $e \cdot Q/L^*$, where *e* is a number of "elite" ants and L* is the shortest path
 - ^o Beware of premature convergence.

AS: Evolution of Solution for 10 Cities

• After greedily searching the space it is desirable to adapt global information stored in $\tau_{ij}(t)$ (it is necessary to partially forget)

• **Stagnation** – branching factor is 2, all ants go the same way.

Applications of ACO algorithms

Static problems

- ° Traveling salesman
- ° Quadratic assigment
- ° Job-shop scheduling
- Vehicle routing
- ° Graph colouring
- ° Shortest common supersequence

• Dynamic problems

° Network routing

References

[Dorigo et al., 1996]

Dorigo M., V. Maniezzo & A. Colorni (1996). The Ant System: Optimization by a Colony of Cooperating Agents. *IEEE Transactions on Systems, Man, and Cybernetics-Part B,* 26(1):29-41

[Dorigo & Gambardella, 1997]

Dorigo M. & L.M. Gambardella (1997). Ant Colonies for the Traveling Salesman Problem. *BioSystems*, 43:73-81.

[Dorigo et al., 1999]

Dorigo M., G. Di Caro & L. M. Gambardella (1999). Ant Algorithms for Discrete Optimization. *Artificial Life*, 5(2):137-172.

[Dorigo & Stützle, 2002]

M. Dorigo and T. Stützle, 2002. The ant colony optimization metaheuristic: Algorithms, applications and advances. In F. Glover and G. Kochenberger editors, *Handbook of Metaheuristics*, volume 57 of International Series in Operations Research & Management Science, pages 251-285. Kluwer Academic Publishers, Norwell, MA.

http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html