Ant Colony Optimization Algorithms

- Construction heuristics
- How ants find shortest route
- Stigmergy
- General ACO metaheuristic
- Ant System for TSP

Motivation

- NP-hard problems - no algorithms that could solve large instances of these problems to optimality
- Discrete combinatory problems
- Approximate metods - can find solutions of good quality in reasonable time
- Approximate metods
- Local search/optimization
- Iteratively improves a complete solution (typically initialized at random) till it reaches some local optimum.
- Construction algorithms
- Build a solution making use of some problem-specific heuristic information
- Ant Colony Optimization (ACO) algorithms - extend traditional construction heuristics with an ability to exploit experience gathered during the optimization process.

Construction Algorithms

- Build solutions to a problem under consideration in an incremental way starting with an empty initial solution and iteratively adding opportunely defined solution components without backtracking until a complete solution is obtained.

```
Procedure GreedyConstructionHeur
    \(s_{p}=\) empty_solution
    while not complete \(\left(s_{p}\right)\) do
        \(e=\) GreedyComponent \(\left(s_{p}\right)\)
        \(s_{p}=s_{p} \otimes \mathrm{e}\)
    end
    return \(s_{p}\)
end
```

- Pros/Cons

TSP: nearest neighbor heuristic

+ fast, solutions of reasonable quality
- Solution may be far from optimum
- Generate only limited number of different solutions
- Decisions made at early stages reduce a set of possible steps at latter stages

Ant Algorithms: Biological Inspiration

- Inspired by behavior of an ant colony
- Social insects - behave towards survival of the colony
- Simple individual behavior \times complex behavior of a colony
- Ability to find the shortest path from the colony to the source of food and back using an indirect communication via pheromone
- Write - ants lay down pheromone on their way to food
- Read - ant detects pheromone (can sense different intensity) laid down by other ants and can choose a direction of the highest concentration of pheromone.
- Emergence - this simple behavior applied by the whole colony can lead to emergence of the shortest path.

Experiments with Real Ants

- Deneuborg et al. (ants Linepithema bumile)
- Nest separated from food with a double-bridge
- Both path of the same length
- At the beginning there is no pheromone
- After some time one of the alternatives gets dominant due to random fluctuations

(b)

Bridges with Different Branches

- Influence of random fluctuations is significantly reduced and majority of ants go for the shorter path in the end.

Example

E
a)

c)

Example

- In each step 30 new ants go from A to B, and 30 ants from E to D
- All ants go with the same speed $1 \mathrm{~s}^{-1}$
- Each ant deposits down 1 unit of pheromone per 1 time unit

Stigmergy

- Stigmergie - two individuals interact indirectly when one of them modifies the environment and the other responds to the new environment at a later time.
- Physically - by depositing a pheromone the ants modify the place they have visited.
- Locality of information - pheromone is "visible" only to ants that are in its close vicinity.
- Autocatalytic behavior - the more ants follow a trail, the more attractive that trail becomes for being followed. The process is thus characterized by a positive feedback loop, where the probability of a discrete path choice increases with the number of times the same path was chosen before
- Pheromone evaporation - realizes forgetting, which prevents premature convergence to suboptimal solutions.

Real Ants Resume

- Almost blind
- Incapable of achieving complex tasks alone
- Capable of establishing shortest-route paths from their colony to feeding sources and back
- Use stigmergic communication via pheromone trails
- Follow existing pheromone trails with high probability

Artificial Ants

- Similarity with real ants:
- Colony of cooperating ants
- Pheromone trail and stigmergy
- Probabilistic decision making, locality of the strategy
- Prior information given by the problem specification
- Local modification of states, induced by preceding ants
- Differences from real ants:
- Discrete world
- Inner states - personal memory with already performed actions
- Ants are not completely blind
- Amount of deposited pheromone is a function of the quality of the solution
- Problem dependent timing of depositing the pheromone
- Extras - local optimization, backtracking

Ant Colony Optimization Metaheuristic

- ACO can be applied to any discrete optimization problem for which some solution construction mechanism can be conceived.
- Artificial ants are stochastic solution construction heuristics that probabilistically build a solution by iteratively adding solution components to partial solutions by taking into account
- heuristic information on the problem instance being solved, if available,
- (artificial) pheromone trails which change dynamically at run-time to reflect the agents' acquired search experience.
- Stochastic component allows generating a large number of different solutions.

General ACO metaheuristic

procedure $A C O$ metaheuristics

ScheduleActivities

ManageAntActivity)
EvaporatePheromone(// forgetting
DaemonActions) \{optional\} // centralized actions local search, elitism
end ScheduleActivities
end $A C O$ metaheuristics
Steps for implementing ACO

- Choose appropriate graph representation
- Define positive feedback
- Choose constructive heuristic
- Choose a model for constraint handling (tabu list at TSP)

Ant System (AS) for TSP

- Problem: Given \boldsymbol{n} cities, the goal is to find the shortest path going through all cities and visiting each exactly once.
- Consider complete graph.
${ }^{\circ} \boldsymbol{d}_{i j}$ is Euclidean distance from city i to city j
- Definition
- m is the number of ants
- $\tau_{i j}(t)$ is the intensity of pheromone on the link (i, j) in time t
- $\boldsymbol{\eta}_{i j}$ is visibility (heuristic information) expressed by $1 / \boldsymbol{d}_{i j}$
- (1- ρ) evaporation factor, ρ is constant for the whole opt. process
- $\boldsymbol{t a b} \boldsymbol{u}_{\boldsymbol{k}}$ is dynamically growing vector of cities that have already been visited by k-th ant
- AS iteration - each ant adds one city to the built route
- AS cycle - composed of n iterations during which all ants complete their routes

AS: Pheromone Deposition

- $\tau_{i j}(t+n)=\rho \cdot \tau_{i j}(t)+\Delta \tau_{i j}$
- $\Delta \tau_{i j}=\sum_{k} \Delta \tau_{j j}^{k}$
- $\Delta \tau_{k}=/^{Q / L_{k} \text {, if } k \text {-th ant used the edge }(i, j) ~}$

0 , otherwise.
where
$\Delta \tau_{i j}{ }^{k}$ is the amount of pheromone deposited on the edge (i, j) by k-th ant within a time interval $(t, t+n)$
\boldsymbol{Q} is a constant
$\boldsymbol{L}_{\boldsymbol{k}}$ is the length of the route constructed by k-th ant
$\boldsymbol{\rho}$ must be smaller than 1, otherwise the pheromone would accumulate unboundedly (recommended is 0.5)
$\tau_{i j}(0)$ is set to small positive values

AS: Probabilistic Decision Making

- Probability of adding a link $i-j$ (where $j \in\left\{N-\right.$ tabu $\left._{k}\right\}$) into the route

$$
p_{i j}^{k^{k}}(t)=\left\{\begin{array}{l}
{\left[\tau_{i j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}\right]^{\beta} / \sum_{l}\left[\tau_{\tau j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}\right]^{\beta}, \text { if } j \in\left\{N-\operatorname{tabu}_{k}\right\}} \\
0, \text { otherwise. }
\end{array}\right.
$$

where

$$
l \in\left\{N-t a b u_{k}\right\}
$$

α, β define relative importance of the pheromone and the visibility

- Probability is a compromise between
- visibility that prefers closer cities to more distant ones and
- intensity of pheromone that prefers more frequently used edges.

AS: Cycle

- Ant-cycle:

1. Initialization

- time: $t=0$
- number of cycles: $N C=0$
- pheromone: $\tau_{i j}(t)=c$
- Initial positioning of m ants to n cities

2. Initialization of tabu lists
3. Ants' action

- Each ant iteratively builds its route
- Calculate length of the routes L_{k} for all ants $k \in(1, \ldots, m)$
- update the shortest route found
- Calculate $\Delta \tau_{i j}{ }^{k}$ and update $\tau_{i j}(t+n)$

4. Increment discrete time

- $t=t+n, N C=N C+1$

5. $\operatorname{If}\left(N C<N C_{\max }\right)$ then goto step 2 else stop

AS: Elitism

- Intensity of pheromone is strengthened on edges that lie on the shortest path out of all generated paths
- Amount of added pheromone: $e \cdot Q / L^{*}$,
where e is a number of „elite" ants and L^{*} is the shortest path
- Beware of premature convergence.

AS: Evolution of Solution for 10 Cities

- After greedily searching the space it is desirable to adapt global information stored in $\tau_{j j}(t)$ (it is necessary to partially forget)

- Stagnation - branching factor is 2 , all ants go the same way.

Applications of ACO algorithms

- Static problems
- Traveling salesman
- Quadratic assigment
- Job-shop scheduling
- Vehicle routing
- Graph colouring
- Shortest common supersequence
- Dynamic problems
- Network routing

References

[Dorigo et al., 1996]
Dorigo M., V. Maniezzo \& A. Colorni (1996). The Ant System:
Optimization by a Colony of Cooperating Agents. IEEE Transactions on
Systems, Man, and Cybernetics-Part B, 26(1):29-41
[Dorigo \& Gambardella, 1997]
Dorigo M. \& L.M. Gambardella (1997). Ant Colonies for the Traveling Salesman Problem. BioSystems, 43:73-81.
[Dorigo et al., 1999]
Dorigo M., G. Di Caro \& L. M. Gambardella (1999). Ant Algorithms for
Discrete Optimization. Artificial Life, 5(2):137-172.
[Dorigo \& Stützle, 2002]
M. Dorigo and T. Stützle, 2002. The ant colony optimization metaheuristic: Algorithms, applications and advances. In F. Glover and G. Kochenberger editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research \& Management Science, pages 251-285. Kluwer Academic Publishers, Norwell, MA.
http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

