Particle Swarm Optimization

- Inspired by biological and sociological motivations
 - Bird flocks
 - Fish schools
 - Swarms of insects

PSO: Characteristics

- **Population-based** optimization technique originally designed for solving real-valued function optimizations
- Applicable for optimizations in rough, discontinuous and multimodal surfaces
- Does not require any gradient information of the function to be optimized
- Conceptually very simple

PSO: Characteristics

- Each candidate solution of continuous optimization problem is described (encoded) by a real vector N-dimensional search space: $\mathbf{x} = x_1, ..., x_n$
- Each candidate solution is called **PARTICLE** and represents one individual of a population called **SWARM**.
- The **particles** change their components and **FLY** through the multidimensional search space.
- Particles calculate their **FITNESS** function as the quality of their actual position in the search space w.r.t. the function to be optimized.
- Particles also compare themselves to their neighbors and imitate the best of that neighbors.

PSO: Fundamentals

- Swarm of particles is flying through the parameter space and searching for the optimum
- Each particle is characterized by
 - Position vector... $x_i(t)$
 - Velocity vector... $v_i(t)$

• Velocity update (*i*th particle):

 $v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 \left(pbest_i(t) - x_i(t) \right) + C_2 \varphi_2 \left(gbest(t) - x_i(t) \right)$

- $pbest_i(t)$... personal best experience; the best value of the fitness function found by the *i*-th particle up to time *t*.
- gbest(t) ... global best experience; the best value out of $pbest_i(t)$ values of all particles in the swarm found up to time t.
- ω ... inertial factor
- φ_1 and φ_2 ... uniformly distributed random numbers that determine the influence of *pbest_i(t)* and *gbest(t)*.
- C_1 ... particle's self-confidence; controls the contribution towards the self-exploration.
- C_2 ... swarm confidence; controls the contribution towards the global direction.

PSO: Characteristics

gbest(t)

• Velocity update (*i*th particle):

 $v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (pbest(t) - x_i(t)) + C_2 \varphi_2 (gbest(t) - x_i(t))$

• Velocity update (*i*th particle):

 $v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (pbest(t) - x_i(t)) + C_2 \varphi_2 (gbest(t) - x_i(t))$

 $V_i(t)$

 $X_i(t)$

gbest(t)

• Velocity update (*i*th particle):

 $v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 \left(\frac{pbest(t) - x_i(t)}{pbest(t)} + C_2 \varphi_2 \left(\frac{gbest(t) - x_i(t)}{pbest(t)} \right) \right)$

• Velocity update (*i*th particle):

 $v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (pbest(t) - x_i(t)) + C_2 \varphi_2 (gbest(t) - x_i(t))$

• Velocity update (*i*th particle):

 $v_{i}(t+1) = \omega v_{i}(t) + C_{1} \varphi_{1} (pbest_{i}(t) - x_{i}(t)) + C_{2} \varphi_{2} (gbest(t) - x_{i}(t))$

PSO: Position Update

• Position update (*i*th particle):

 $x_i(t+1) = x_i(t) + v_i(t+1)$

PSO: Algorithm

Input: Randomly initialized position and velocity of the particles: $X_i(0)$ and $V_i(0)$ Output: Position of the approximate global optima X^*

```
begin
while terminating condition is not reached do
begin
for i=1 to number_of_particles
calculate fitness f(X<sub>i</sub>)
update p<sub>i</sub> and g<sub>i</sub>
adapt velocity of the particle
update position of the particle
increase i
end
```

end

PSO: Setting the Inertia Factor ω

- Static parameter setting
 - $\omega <<1$... only little momentum is preserved from the previous time-step. $\omega = 0$... the particle moves in each step totally ignoring information about the past velocity.
 - ω>1 ... particles can hardly change their direction which implies a reluctance against convergence towards optimum.
 ω>1 is always used with V_{max} to avoid swarm explosion.
- Dynamic parameter setting annealing scheme; ω decreases linearly with time from $\omega=0.9$ to $\omega=0.4$.

Globally explores the search space in the beginning of the run.

Performs local search in the end.

• V_{max} can be set to the full search range of the particle's position in order to allow global search.

PSO: Swarm Size

 Swarm size has no significant effect on the performance of the PSO. Typical values are 20-60.

PSO: Acceleration Coefficients C_1 and C_2

• Static setting

Usually $C_1 = C_2$ and range within [0, 4], for example $C_1 = C_2 = 1.494$.

• Dynamic setting - coefficients vary with time according to

$$C_1 = (C_{1f} - C_{1i}) \frac{i}{MAXITER} + C_{1i}$$

$$C_2 = (C_{2f} - C_{2i}) \frac{i}{MAXITER} + C_{2i}$$

where C_{1f} and C_{2f} are final values for C_1 and C_2 , C_{1i} and C_{2i} are current values at iteration *i*, and *MAXITER* is the maximum number of iterations.

Particular scheme: C_1 decreases from 2.5 to 0.5; C_2 increases from 0.5 to 2.5.

Effect: Global search during the early phase of the optimization process; convergence to global optimum at the final stage of the optimization process.

References

Das S. et al.: Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives, 2008 http://www.softcomputing.net/aciis.pdf