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Evolutionary Programming

is to evolve an "intelligent behavior” that would exhibit the ability to (1) predict one’s
environment, coupled with (2) a translation of the predictions into a suitable response in light of
the given goal.

m the environment was described as a sequence of symbols taken from a finite alphabet,

s finite state machines (FSMs) were used for representing the required behavior.
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Evolution Strategies: Optimization of a Two-Phase Nozzle

was to determine the internal shape of a two-phase jet nozzle with maximum thrust
under constant starting conditions.

m [he nozzles were built of conical pieces such that no discontinuity within the internal shape
was possible.

Every nozzle shape could be represented by its overall length and the inside diameters at the
borders between the segments (every 10mm).

using mutations of the following forms:
= Add new segment to the nozzle at positions chosen at random.

Duplicate an existing segment.

s Delete a randomly chosen segment.

s Vary diameters of a randomly chosen segment.
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Evolutionary Algorithms: Characteristics

= — but not random search,

genetic inheritance (J.G. Mendel) — the basic principles of transference of hereditary fac-

tors from parent to offspring — genes, which present hereditary factors, are lined up on
chromosomes.

strife for survival (Ch. Darwin) — the fundamental principle of natural selection — is the

process by which individual organisms with favorable traits are more likely to survive and
reproduce.

N — population-based algorithm,

0 — efficient in finding good solutions in difficult searches.




EA: Vocabulary

:: Vocabulary borrowed from natural genetics

n (chromosome + its quality measure "fitness value”) — a solution to a problem.
O — entire representation of the solution.
n — quality measure assigned to an individual, expresses how well it is adapted to the

environment.

(also features, characters) — elementary units from which chromosomes are made.

each gene is located at certain place of the chromosome called locus (pl. loci),

a particular value for a locus is an allele.

example: the "thickness” gene (which might be at locus 8) might be set to allele 2,
meaning its second-thinnest value.

® — what's on the chromosome.

N — what it means in the problem context (e.g., binary sequence may map to
integers or reals, or order of execution, etc.).




Representation

:: Problem can be represented as
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Evaluation Function

m the only information about the sought solution the algorithm dispose of,

= must be defined for every possible chromosome.

= multimodal, = nonlinear,
m discrete, = NOisy,
= multidimensional, = multiobjective.

= simulation results,

m classification success rate.




Example: Coding & Evaluation

= maximization of f(z,y) = 2 + v,

m parameters x and y take on values from interval < 0,31 >,

m and are code on 5 bits each.

genotype phenotype fitness
00000, 01010 0, 10 100
00001, 11001 1, 25 625 + 1 =626
01011, 00011 11, 3 121 + 9 =130
11011, 10010 27,18 729 + 324 = 1053




Evolutionary Cycle
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Idealized lllustration of Evolution

s Uniform sampled population. s Population converged to promising regions.
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Initialization

randomly generated solutions,

no prior information about the shape of the sought solution,

relies just on "lucky” sampling of the whole search space by a finite set of samples.

(meta)heuristic routines used for seeding the initial population,
m biased random generator sampling regions of the search space that are likely to contain the
sought solutions,

may help to find better solutions,

may speed up the search process,

may cause irreversible focusing of the search process on regions with local optima.




Reproduction

:: Models nature's survival-of-fittest principle

m prefers better individuals to the worse ones,

= still, every individual should have a chance to reproduce.

= probability of choosing some solution is di-
rectly proportional to its fitness value
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:: Other methods
m Stochastic Universal Sampling,

= Tournament selection,

= Reminder Stochastic Sampling.




Reproduction: Premature Convergence & Stagnation

:: Two (strongly related) important issues in the evolution process

= population diversity,

= selective pressure.

— a premature loss of diversity in the population with the search
converging to a sub-optimal solution.

= early stages of the evolution search process.

— ineffective search due to a weak selective pressure.

= later stages of the evolution search process.
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Stagnation
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How to Deal with it?

:: Balance between and

= How to achieve the optimal selective pressure during the whole evolution search?
:: Options

m scaling techniques,

m proper selection mechanisms,

= fitness sharing and crowding,




Scaling

— adjustment of the fitness values distribution in order to get desired selection

pressure

0 — fmax/favg

The actual chromosomes’ fitness is scaled as

fz/:afz+b

Parameters a and b are selected so that
= the average fitness is mapped to itself, and
m the best fitness is increased by a desired multiple of the average fitness.

Typical value of o is from (1.5,2.0)
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Tournament Selection

:: Tournament selection — the best out of n randomly chosen individuals is selected.

m N is the size of the tournament,

m rank-based method — absolute differences among individuals do not count.

Population
Contestants (K=3)
\@ \ Champion
1

2 3
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Rank Selection

— fitness of the individual is calculated based on the rank of the individual in

the population according to the formula

= PopSize — rank(i) + shift

where shi ft is the fitness of the worst individual in the population.
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Genetic Operators: Crossover

= given two well-fit solutions to the given problem, it is possible to get a new solution by properly
mixing the two that is even better than both its parents.

= sampling (exploration) of the search space

Example: 1-point crossover

parent 1 parent 2

offspring 1 offspring 2
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Genetic Operators: Mutation

Role of mutation

m preservation of a population diversity,

= minimization of a possibility of loosing some important piece of genetic information.

Populati ith missi ti
Single bit-flipping mutation Opuiation with missing genetic

information
original chromosome 0011000110
| [ ] 0110010100
0001101011
0100100111
| i 0110000101

modified chromosome




Replacement Strategy

defines

= how big portion of the current generation will be replaced in each generation, and

= which solutions in the current population will be replaced by the newly generated ones.
Two extreme cases

= Generational - the whole old population is completely rebuild in each generation (analogy
of short-lived species).

= Steady-state - just a few individuals are replaced in each generation (analogy of longer-lived
species).




Application Areas of Evolutionary Algorithms

EAs are popular for their

= simplicity,
s effectiveness,

= robustness.

Holland: "It's best used in areas where you don’t really have a good idea what the solution
might be. And it often surprises you with what you come up with.”

Applications
= control, = network optimization & routing problems,
= engineering design, = optimal resource allocation,
m image processing, = marketing,
= planning & scheduling, m credit scoring & risk assessment,

= VLSI circuit design, = and many others.




Multiple Traveling Salesmen Problem

m Given N cities and K agents, find an opti-
mal tour for each agent so that every city is
visited exactly once.

m A typical criterion to be optimized is the
overall time spent by the squad (i.e., the
slowest team member) during the task ex-
ecution.
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Artificial Ant Problem

s 32 x 32 grid with 89 food pieces. / Start

V4
oeql

= Obstacles ]

— 1Xx,2X strait,

— 1x,2x%,3xX right/left. I 1/

m detects the food right in front of

24

him in direction he faces.

m actions observable from outside

62

/38

— MOVE - makes a step and eats Pif

a food piece if there is some,

End

— LEFT - turns left,

— RIGHT - turns right,
— NO-OP - no operation.

is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).
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Artificial Ant Problem: GA Approach

m strategy represented by finite state machine,

m table of transitions coded as binary chromosomes of fixed length.

Example: 4-state FSM, 34-bit long chromosomes (2 + 4 x 8)

Current state Input New state Operation
1 00 0 01 10 = Right
2 00 1 00 11 = Move
3 01 0 10 01 = Left
4 01 1 00 11 = Move
5 10 0 11 01 = Left.
6 10 1 00 11 = Move
7 11 0 00 10 = Right
8 11 1 00 11 = Move

[0 70110 _J0011 ] 1001 JOOIT [ 1101 JO0OIl J00I0 ] OOl




Artificial Ant Problem: Example cont.

s What happens if the ant "hits” an obstacle?

s What is strange with transition from state 10
to the initial state 007

s When does the ant succeed?

m Is the number of states sufficient to solve the
problem?

m Do all of the possible 34-bit chromosomes
represent a feasible solution?

1/Move

Initial
State
00




Artificial Ant Problem: GA result

Representation
m 32 states,

m 453 =64 x 7+ 5 bits !l

Population size: 65.536 !!!
Number of generations: 200

Total number of samples tried: 13 x 10° !!!
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Schema Theory

(J. Holland, 1975) — tries to analyze effect of selection, crossover and mutation
on the population’s genotype in order to answer the question: "Why and How Evolutionary

Algorithms Work?”

In its original form the schema theory assumes:
= binary representation,
m proportionate roulette wheel selection,

m 1-point crossover and bit-flip mutation.




Schema theory

— a template, which defines set of solutions from the search space with certain specific
similarities.
s consists of Os, 1s (fixed values) and wildcard symbols * (any value),
m covers 2" strings, where r is a number of * used in the schema.
Example: schema S ={11*0*} covers strings 11000, 11001, 11100, and 11101

s Defining length §(5) (compactness) — distance between first and last non-* in a schema
(= number of positions where 1-point crossover can disrupt it).

s Order o(S) (specificity) — a number of non-*'s (= number of positions where simple bit
swapping mutation can disrupt it).
Chromosomes are order [ schemata, where [ is length of chromosome (in bits or loci).
Chromosomes are instances (or members) of lower-order schemata.

How many schemata are matched by a string of length [?

s Fitness f(.5) (quality) — average fitness computed over all covered strings.
Example: S ={**1*01*0**}. §(S) =5, o(S) =4




Schema Properties: Example

— maximize a number of ones in 8-bit string.

string  fitness string  fitness
00000000 O 11011111 7
oooooo01 1 ... 10111111 7
00000010 1 o1111111 7
00000100 1 11111111 8

Assume schema S, ={1*1**10*} vs. S, ={*0*0****}:
s defining length: §(S,)=7—1=6,0(S)) =4 —2=2

= order: O(Sa) = 4, O(Sb) =2
s fitness of S,: S, covers 2% strings in total

1 string of fitness 3

4 string of fitness 4 f(S,)=(1-3+4-44+6-5+4-64+1-7)/16
6 string of fitness 5 f(S,) =80/16 =5

4 string of fitness 6

1 string of fitness 7

fitness of S;: Sy, =(1-0+6-1+15-2+20-34+15-4+6-5+1-6)/2°=192/64 = 3

. What would be a fitness of S ={*0*1****} compared to S




Schema Theorem Derivation: Effect of Reproduction

Let m(S,t) be number of instances (strings) of schema S in population of size n at time t.

: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation ¢ to ¢ + 17

A string a; is copied according to its fitness; it gets selected with probability
'
P = :
> 1

After picking n strings with replacement from the population at time ¢, we expect to have
m(S,t + 1) representatives of the schema S in the population at time ¢ 4+ 1 as given by the

equation
fS)
> fi

m(S,t+ 1) =m(S,t)-n

where f(9) is the fitness of schema S at time t.




Schema Theorem Derivation: Effect of Reproduction

Let m(S,t) be number of instances (strings) of schema S in population of size n at time t.

: How do schemata propagate? What is a lower bound on change in sampling rate of
a single schema from generation ¢ to ¢ + 17

A string a; is copied according to its fitness; it gets selected with probability
'
P = :
> 1

After picking n strings with replacement from the population at time ¢, we expect to have
m(S,t + 1) representatives of the schema S in the population at time ¢ 4+ 1 as given by the

equation
fS)
> fi

m(S,t+ 1) =m(S,t)-n

where f(9) is the fitness of schema S at time t.

The formula can be rewritten as

m(St+1) = m(s.1) - 1)

favg ’

where f,,, is the average fitness of the population.




Schema Theorem Derivation: Effect of Crossover and Mutation

= Survival probability p, — let's make a conservative assumption that crossover within the defining
length of S is always disruptive to .S, and ignore gains.

s Crossover probability p. — fraction of population that undergoes crossover.
ps 21— (pc-6(5)/(L —1))

Example: Compare survival probability of S = (11 * % % %) and .S = (1 % * * x0).




Schema Theorem Derivation: Effect of Crossover and Mutation

= Survival probability p, — let's make a conservative assumption that crossover within the defining
length of S is always disruptive to .S, and ignore gains.

s Crossover probability p. — fraction of population that undergoes crossover.
ps 21— (pc-6(5)/(L —1))

Example: Compare survival probability of S = (11 * % % %) and .S = (1 % * * x0).

Each fixed bit of schema (o(S) of them) changes with probability p,,, so they all stay unchanged

with probability
Ps = (1 - pm)0(5>
that can be approximated as
ps = (1 —0(5) - pm)

assuming p,, < 1.




Schema Theorem Derivation (cont.)

:: Finally, we get a "classical” form of the

f(5)

m(S,t+1) > m(S,t) - P
avg

What does it tell us?
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Schema Theorem Derivation (cont.)

:: Finally, we get a "classical” form of the

1(S)
favg

m(S,t+ 1) > m(S,t) - 1 —pe-——= —0(5) - pml-

What does it tell us?

. Short, low-order, above-average schemata receive exponentially increasing
trials in subsequent generations of a genetic algorithm.

. A genetic algorithm seeks near-optimal performance through
the juxtaposition of short, low-order, high-performance schemata, called the building blocks.

David Goldberg: " Short, low-order, and highly fit schemata are sampled, recombined, and resam-
pled to form strings of potentially higher fitness. .. we construct better and better strings from
the best partial solutions of the past samplings.”

:: Y. Davidor: " The whole GA theory is based on the assumption that one can state something
about the whole only by knowing its parts.”

: The problem of coding for a GA is critical for its performance, and that such a coding
should satisfy the idea of short building blocks.




EA Materials: Reading, Demos, Software

s D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, 1989.

s Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1998.

s Z. Michalewicz: How to solve it? Modern heuristics. 2nd ed. Springer, 2004.

M. Obitko: Introduction to genetic algorithms with java applets,
http://cs.felk.cvut.cz/ xobitko/ga/

s ECJ 16 — A Java-based Evolutionary Computation Research System
http://cs.gmu.edu/ eclab/projects/ecj/

s PISA — A Platform and Programming Language Independent Interface for Search Algorithms
http://www.tik.ee.ethz.ch /sop/pisa/?page=selvar.php




