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Multi-Objective Optimization

Many real-world problems involve multiple objectives

= Conflicting objectives

A solution that is extreme with respect
to one objective requires a compromise in
other objectives.

A sacrifice in one objective is related to
the gain in other objective(s).

Motivation example: Buying a car

two extreme hypothetical cars 1 and 2,

cars with a trade-off between cost and

comfort — A, B, and C.
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comfort — A, B, and C.

= Which solution out of all of the trade-off solutions is the best with respect to all objectives?
Without any further information those trade-offs are indistinguishable.

—> a number of optimal solutions is sought in multiobjective optimization!




Multi-Objective Optimization: Definition

General form of multi-objective optimization problem

Minimize /maximize f,,(x), m=1,2,.... M,
subject to g;(x) > 0, j=12..J;
hi(z) = 0, k=12 .. K

CL’Z(L) <z < :Ugw, 1=1,2,...,n.

T.

= 1 is a vector of n decision variables: x = (x1, 2o, ..., ;)

Decision space is constituted by variable bounds that restrict each variable x; to take a

e L
value within a lower :1:5 )

and an upper 2V bound;

?

Inequality and equality constraints

m A solution x that satisfies all constraints and variable bounds is a feasible solution, otherwise
it si called an infeasible solution:;

Feasible space is a set of all feasible solutions;

= Objective functions f(x) = (f1(z), fa(x), ..., far(x))! constitute a multi-dimensional

objective space.




Decision and Objective Space

=
3 O e . .
A Decision space Objective space

X
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m For each solution x in the decision space, there exists a point in the objective space

Fo) = 2 = (21, 29,y )T
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Motivation Example: Cantilever Design Problem

Task is to design a beam, defined by two decision variables

s diameter d,

= length [.

that can carry an end load P and is optimal with
respect to the following objectives i :

= f1 — minimization of weight,

AARRANANRN
|

= fo — minimization of de flection.

Obviously, conflicting objectives!
su bject to the fo”owing constraints (©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

m the developed maximum stress 0,,,; is less than the allowable strength S,

= the end deflection ¢ is smaller than a specified limit 9,4,




Cantilever Design Problem:

Decision and Objective Space
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Non-Conflicting Objectives

There exist multiple Pareto-optimal solutions in a problem only if the objectives are conflicting to

each other.
m If this does not hold then the cardinality of the Pareto-optimal set is one.

This means that the optimum solution corresponding to any objective is the same.

Example: Cantilever beam design problem
= fi — minimizing the end deflection 9,

m fo — minimizing the maximum developed stress in the beam o,,,..
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Dominance and Pareto-Optimal Solutions
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Dominance and Pareto-Optimal Solutions
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Domination: A solution 2! is said to dominate the other solution x), x() < z@ if (1) js
no worse than =2 in all objectives and x\V) is strictly better than =¥ in at least one objective.
Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions)

Solution E is dominated by C and B (E is non-optimal).




Properties of Dominance-Based Multi-Objective Optimization

Non-dominated set — Among a set of solutions P, the noon-dominated set of solutions P’ are
those that are not dominated by any member of the set P.

The non-dominated set of the entire feasible search space is the globally Pareto-optimal set.

£ Min--Min f‘-‘ Min--Max

£ £
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Goals of Dominance-Based Multi-Objective Optimization

Every finite set of solutions P can be divided into two non-overlapping sets

= non-dominated set PP; — contains all solutions that do not dominate each other, and
= dominated set P, — at least one solution in P dominates any solution in P.

In the absence of other factors (e.g. preference for certain objectives, or for a particular region of
the tradeoff surface) there are two goals of the multi-objective optimization

= Quality — To find a set of solutions as close as possible to the Pareto-optimal front.

= Spread - To find a set of solutions as diverse as possible.




Differences with Single-Objective Optimization

Two (orthogonal) goals instead of one

m progressing towards the Pareto-optimal front,

= maintaining a diverse set of solutions in the non-dominated set.

Dealing with two search spaces

= objective vs. decision space,

= in which space the diversity must be achieved?




Difficulties with Classical Optimization Algorithms

= [he convergence to an optimal solution depends on the chosen initial solution.
s Most algorithms tend to get stuck to a suboptimal solution.

= An algorithm efficient in solving one optimization problem may not be efficient in solving a
different opt. problem.

s Algorithms are not efficient in handling problems having a discrete search space.

m Algorithms cannot be efficiently used on a parallel machine




Multi-Objective Evolutionary Algorithms

= Pareto Archived Evolution Strategy (PAES)
Knowles, J.D., Corne, D.W. (2000) Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation, 8(2), pp. 149-172

s Multiple Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization:
Formulation, Discussion and Generalization, In Genetic Algorithms: Proceedings of the Fifth
International Conference, 1993

= Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn, Nicholas Nafpliotis, David E. Goldberg: A Niched Pareto Genetic Algorithm
for Multiobjective Optimization, Proceedings of the First IEEE Conference on Evolutionary
Computation, I[EEE World Congress on Computational Intelligence, 1994

= SPEA2

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Al-
gorithm For Multiobjective Optimization, In: Evolutionary Methods for Design, Optimisation,

and Control, Barcelona, Spain, pp. 19-26, 2002




= NSGA
Srinivas, N., and Deb, K.: Multi-objective function optimization using non-dominated sorting
genetic algorithms, Evolutionary Computation Journal 2(3), pp. 221-248, 1994

= NSGA-II

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In Proceedings of the
Parallel Problem Solving from Nature VI Conference, 2000




Non-Dominated Sorting Genetic Algorithm (NSGA)

Common features with the standard GA

m variation operators — crossover and mutation,
s selection method — Stochastic Reminder Roulette-Wheel,

= standard generational evolutionary model.

What distinguishes NSGA from the SGA

= fitness assignment scheme which prefers non-dominated solutions, and

= fitness sharing strategy which preserves diversity among solutions of each non-dominated
front.

Algorithm NSGA

1. Initialize population of solutions
2. Repeat

m Calculate objective values and assign fitness values

= Generate new population

Until stopping condition is fulfilled




Fitness Sharing

Diversity preservation method originally proposed for solving multi-modal optimization prob-
lems so that GA is able to sample each optimum with the same number of solutions.

Idea — diversity in the population is preserved by degrading the fitness of similar solutions

Algorithm for calculating the shared fitness value of ¢-th individual in population of size NV

1. calculate sharing function value with all solutions in the population according to

1 — ( dij )oz’ if dij S O share

Shid::) = Oshare
( w) 0, otherwise.

2. calculate niche count nc; as follows

N

ne; = Z Sh(d;;)

j=1

3. calculate shared fitness as
fi = fi/nc;

Remark: If d = 0 then Sh(d) = 1 meaning that two solutions are identical. If d > o4 then
Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.




Fitness Sharing: Example

Bimodal function - six solutions and corresponding shared fitness functions

B Ogygre = 0.5, = 1.

Sol. String Decoded x(U f; ne; i 5
1 value
1" " Hip100 52 1.651 0.890 2.856 0.312 il
2 101100 44 1.397 0.948 3.160 0.300 el
3: 011101 29 0.921 0.246 1.048 0.235 :
4 001011 11 0.340 0.890 1.000 0.890 Lt
5 110000 48 1.524 0.997 3.364 0.296 02
68 Q110 46 1460 0.992 3.364 0.295 -
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Let's take the first solution

m dyp = 0.0, dyg = 0.254, dy3 = 0.731, d1y = 1.302, dy5 = 0.127, dig = 0.191

s Sh(dy) =1, Sh(dys) = 0.492, Sh(dy3) =0, Sh(dy4) = 0,

Sh(ds) = 0.746, Sh(ds) = 0.618.
s nep =1 +0.492 + 0+ 04 0.746 + 0.618 = 2.856
s /(1) = f(1)/nc; = 0.890/2.856 = 0.312

1.5 2
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NSGA: Fitness Assignment

Input: Set P of solutions with assigned objective values.

Output: Set of solutions with assigned fitness values (the bigger the better).

1. Choose sharing parameter g, small positive number e,

initialize F},,, = PopSize and front counter front =1
2. Find set P’ C P of non-dominated solutions

3. Foreachg e P’
= assign fitness f(q) = fiaz

= calculate sharing function with all solutions in P’ niche

: / M
count nc, among solutions of P’ only, g —
: : : : ij = E
the normalized Euclidean distance d;; is calculated 1 fmax

= calculate shared fitness f'(q) = f(q)/nc,.
4. foae =min(f'(q) :q € P') —¢
P=P\P
front = front +1

5. If not all solutions are assessed go to step 2, otherwise stop.




NSGA: Fitness Assignment cont.

Example:

m First, 10 solutions are classified into different non-dominated fronts.
m [hen, the fitness values are calculated according to the fitness sharing method.
The sharing function method is used front-wise.

Within a front, less dense solutions have better fitness values.
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NSGA: Conclusions

Computational complexity
s Governed by the non-dominated sorting procedure and the sharing function implementation.

non-dominated sorting — complexity of O(M N?).

sharing function — requires every solution in a front to be compared with every other
solution in the same front, total of » /| | Pj|?, where p is a number of fronts.

Each distance computation requires evaluation of n differences between parameter values.
In the worst case, when p = 1, the overall complexity is of O(nN?).

Advantages
= Assignment of fitness according to non-dominated sets — makes the algorithm converge towards
the Pareto-optimal region.

= Sharing allows phenotypically diverse solutions to emerge.
Disdvantages
m sensitive to the sharing method parameter o4

some guidelines for setting the parameter based on the expected number of optima g¢.
0.5

{a

Oshare =

or dynamic update procedure of gpqe.




NSGA-II

Fast non-dominated sorting approach
= Computational complexity of O(M N?).

Diversity preservation
m the sharing function method is replaced with a crowded comparison approach,
m parameterless approach.

Elitist evolutionary model

= Only the best solutions survive to subsequent generations.




NSGA-II: Diversity preservation

Density estimation — estimates how much unique the solution is.

i
f,

-

.=

(©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Crowded comparison operator

Every solution in the population has two attributes
1. non-domination rank (i"*"%), and

2. crowding distance (i4/st@nce),

A partial order <,, is defined as:

7 '<nj if(imnk < jmnk) or ((Z'rank — jrank)and(idistcmce > jdistance))




NSGA-II: Evolutionary Model

1. Current population F; is sorted based on the non-domination

Each solution is assigned a fitness equal to its non-domination level (1 is the best).

2. The usual binary tournament selection, recombination, and mutation are used to create a child
population (); of size N.

3. Combined population R; = P, U (), is formed.

Elitism is ensured.

4. Population P, is formed according to the following schema

Non—dominated Crowding P,
sorting distance
F_] I:I sorting |:|
P, e | L]
F_3
2,
Q, 1]
l: = Rejected
—1
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Simulation Results: NSGA vs. NSGA-II

Comparison of NSGA nad NSGA-II on bi-objective 0/1 Knapsack Problem with 750 items.

NSGA-II outperforms NSGA with respect to both performance measures.
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NSGA-II: Simulation Results on Different Types of Problems

Problem with continuous Pareto-optimal front Problem with discontinuous Pareto-optimal front
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NSGA-II: Constraint Handling Approach

Binary tournament selection with modified domination concept is used to choose the better
solution out of the two solutions ¢ and j, randomly picked up from the population.

In the presence of constraints each solution in the population can be either feasible or infeasible,
so that there are the following three possible situations:

1. both solutions are feasible,
2. one is feasible and other is not,

3. both are infeasible.




NSGA-II: Constraint Handling Approach

Binary tournament selection with modified domination concept is used to choose the better
solution out of the two solutions ¢ and j, randomly picked up from the population.

In the presence of constraints each solution in the population can be either feasible or infeasible,
so that there are the following three possible situations:

1. both solutions are feasible,
2. one is feasible and other is not,

3. both are infeasible.

Constrained-domination: A solution i is said to constrained-dominate a solution j, if any of
the following conditions is true

1. Solution 7 is feasible and solution j is not.

2. Solutions 7 and j are both infeasible, but solution ¢ has a smaller overall constraint violation.

3. Solutions ¢ and j are feasible, and solution ¢ dominates solution j.




NSGA-II: Simulation Results cont.

Comparison of NSGA-Il and Ray-Kang-Chye's Constraint handling approach

B Ray, T., Tai, K. and Seow, K.C. [2001] " Multiobjective Design Optimization by an Evolutionary Algorithm”, Engineering Optimization, Vol.33, No.4, pp.399-424
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NSGA-II: Simulation Results cont.

Comparison of NSGA-Il and Ray-Kang-Chye's Constraint handling approach

Ray-Kang-Chye's
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Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 maintains two sets of solutions
= regular population of newly generated solutions, and
= archive, which contains a representation of the nondominated front among all solutions
considered so far.

The archive size is fixed, i.e., whenever the number of nondominated individuals is less
than the predefined archive size, the archive is filled up by good dominated individuals.

A truncation method is invoked when the nondominated front exceeds the archive limit.

A member of the archive is only removed if 1) a solution has been found that dominates it
or 2) the maximum archive size is exceeded and the portion of the front where the archive
member is located is overcrowded.

Using the archive makes it possible not to lose certain portions of the current nondominated
front due to random effects.

All individuals in the archive participate in selection.




SPEA2: Algorithm

Input: N is the population size, N is the archive size.

1. Initialization: Generate an initial population P, and create the empty archive Py = (). Set
t=0.

2. Fitness assignment: Calculate fitness of individuals in P, and P;.
3. Environmental selection: Copy all nondominated individuals in P; and P; to P;y.

If size of P;,; exceeds N then reduce P;.; using the truncation operator.

If size of P;,; is less than N then fill P;,; with dominated solutions in P, and P;.
4. Termination: If t > T then return nondominated solutions in P . Stop.

5. Mating selection: Perform binary tournament selection with replacement on P, in order
to fill the mating pool.

6. Variation: Apply recombination and mutation operators to the mating pool and fill P,
with the generated solutions,
increment generation counter t =1 + 1,

go to Step 2.




SPEA2: Fitness Assignment

Fitness assignment (fitness is to minimized) — for each
individual both dominating and dominated solutions are
taken into account.

s Each individual i in the archive P; and the population
P, is assigned a strength value S(7), representing the
number of solutions it dominates.

s The raw fitness R(7) of an individual i is calculated as
Ri)=" 3, S0
jEPt+Ft,j>-i
that is R(7) is determined by the strengths of its dom-
inators in both archive and population.
R(i) = 0 corresponds to a nondominated solution.

Since the raw fitness assignment is based on the
concept of Pareto dominance, it may fail when most
individuals do not dominate each other.
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SPEA2: Density Estimation

Density information is incorporated to discriminate between individuals having identical raw
fitness values.
The density at any point is estimated as a (decreasing) function of the distance to the k-th nearest

data point — calculated as the inverse of the distance to the k-th nearest neighbor.

s k equal to the square root of the sample size is used: k = v/ N + N.

s Density D(i) is calculated as
1

:0f+2

where oF is the distance to the k-th nearest neighbor and it is made sure that D(i) < 1.

D()

Final fitness is given as
F(7) = R(i) + D(3)




SPEA2: Environmental Selection

If after copying all nondominated individuals from archive and population to the archive of the
next generation

= the archive is too small (i.e. |P;.; < NJ), the best N — |P;,{| dominated solutions (w.r.t.
fitness) in the previous archive and population are copied to the new archive;

= the archive is too large (i.e. |P;,; > N|), individuals from P;, | are iteratively removed until
[Pt = N.

At each iteration, the individual which has the minimum distance to another individual is
chosen (a tie is broken by considering the second smallest distances and so forth).




SPEA2: Conclusions

SPEA2

m uses the concept of Pareto dominance in order to assign scalar fitness values to individuals;

uses a fine-grained fitness assignment strategy which incorporates density information
in order to distinguish between solutions that are indifferent, i.e., do not dominate each other;

m uses environmental selection in order to keep the optimal diversity in the archive;

= seems to have advantages over NSGA-II in higher dimensional objective spaces.




MOEA Performance Measures

The result of a MOEA run is not a single scalar value, but a collection of vectors forming a
non-dominated set.

s Comparing two MOEA algorithms requires comparing the non-dominated sets they produce.

However, there is no straightforward way to compare different non-dominated sets.

Three goals that can be identified and measured:

1. The distance of the resulting non dominated set to the Pareto-optimal front should be mini-
mized.

2. A good (in most cases uniform) distribution of the solutions found is desirable.

3. The extent of the obtained non dominated front should be maximized, i.e., for each objective,
a wide range of values should be present.




S Metric

Size of the space covered S(X) - it calculates the hypervolume of the multi-dimensional
region enclosed by a set A and a reference point Z"/. The hypervolume expresses the size of

the region that is dominated by A.

So, the bigger the value of this measure the better the quality of A is, and vice versa.

©Knowles J. and Corne D.: On Metrics for Comparing Non-Dominated Sets.




S Metric cnd.

Pros:

= Given two non-dominated sets, A and B, if each point in B is dominated by a point in A
then A will always be evaluated as being better than B.

= Independent — the hypervolume calculated for the given set is not dependent on any other, or
any reference set.

m Differentiates between different degrees of complete outperformance of two sets.

= Intuitive meaning/interpretation.

Cons:
m Requires defining some upper boundary of the region.

This choice does affect the ordering of non-dominated sets.

= It has a large computational overhead, O(n**1), where n is the number of nondominated
solutions and k is the number of objectives, rendering it unusable for many objectives or large
sets.

= It multiplies apples by oranges, that is, different objectives together.




C' Metric

Coverage of two sets C'(X,Y) — given two sets of non-dominated solutions X and Y found
by the compared algorithms, the measure C'(X,Y") returns a ratio of a number of solutions of YV
that are dominated by or equal to any solution of X to the whole set Y.

= It returns values from the interval [0, 1]. =t
S| @
s The value C(X,Y) = 1 means that all solutions in 1 . > A—— ,
Y are covered by solutions of the set X. And vice ‘A
versa, the value C'(X,Y) = 0 means that none of the | ™ . ¢
solutions in Y are covered by theset X. | e
= Always both orderings have to be considered, since min>
C(X,Y) is not necessarily equal to 1 — C(Y, X). C(A, B) = 0.25, C(B, A) = 0.75

Properties:
m It has low computational overhead.

= If two sets are of different cardinality and/or the distributions of the sets are non-uniform,

then it gives unreliable results.




C' Metric cnd.

Properties:

= Any pair of C' metric scores for a pair of sets A and B in which neither C'(A, B) = 1 nor
C'(B,A) = 1, indicates that the two sets are incomparable according to the weak outperfor-

mance relation.

m It is cycleinducing — if three sets are compared using C, they may not be ordered.

Example:
s C(A,B)=0,C(B,A)=3/4
« C(B,C)=0,C(C,B)=1/2
s C(A,C)=1/2, C(C;A) =0

B considered better than A, A better than C,

but C' better than B.
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