
Evolutionary Algorithms: Genetic Programming

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a4m33bia/start



pGenetic Programming (GP)

GP shares with GA the philosophy of survival and reproduction of the fittest and the analogy

of naturally occurring genetic operators.

GP differs from GA in a representation, genetic operators and a scope of applications.

Structures evolved in GP are trees of dynamically varying size and shape representing

hierarchical computer programs.

Chromosome of fixed length:

GP trees:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGenetic Programming (GP): Application Domains

Applications

� learning programs,

� learning decision trees,

� learning rules,

� learning strategies,

� . . . Strategy for artificial ant

Arithmetic expression Logic expression

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Representation

All possible trees are composed of functions (inner nodes) and terminals (leaf nodes) appro-

priate to the problem domain

� Terminals – inputs to the programs (indepen-

dent variables), real, integer or logical constants,

actions.

� Functions

− arithmetic operators (+, -, *, / ),

− algebraic functions (sin, cos, exp, log),

− logical functions (AND, OR, NOT),

− conditional operators (If-Then-Else,

cond?true:false),

− and others.

Example: Tree representation of a LISP

S-expression 0.23 ∗ Z +X − 0.78

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Crossover

Subtree crossover

1. randomly select a node (crossover point) in

each parent tree,

2. create the offspring by replacing the subtrees

rooted at the crossover nodes.

Crossover points do not have to be selected with

uniform probability

� Typically, the majority of nodes in the trees

are leaves, because the average branching

factor (the number of children of each node)

is ≥ 2.

� To avoid swapping leave nodes most of

the time, the widely used crossover scenario

chooses function nodes 90% of the time and

leaves 10% of the time.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Mutation

Subtree mutation

1. randomly select a mutation point from the set of all nodes in the parent tree,

2. substitute the subtree rooted at the picked node with the new subtree generated in the same

way as used for generating trees for the initial population.

Point mutation

1. randomly select a mutation point from the set of all nodes in the parent tree,

2. substitute the primitive stored in the selected node with a different primitive of the same arity

taken from the primitive set.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Primitives sets properties

Closure

� Type consistency – any function and terminal can be used in any

of the argument positions for every function in the function set.

Usually, all the functions are return values of the same type, and

each of their arguments have this type.

Automatic conversion mechanism – a mechanism for converting

values of one type to values of the required type. For example,

converting real numbers to Booleans can be realized by treating

all negative values as false and non-negative values as true.

An alternative to ensure type consistency is Strongly Typed GP.

� Evaluation safety – to ensure that the GP computation does not fail at run time.

Protected functions – first test for potential problems with its inputs before executing the

corresponding instruction. If a problem is spotted then some default value is returned or a

default action is taken.

− Protected division – if the second argument is zero, then returns typically value 1.

− Protected MOVE AHEAD instruction – if a forward move is illegal then the instruction does

nothing.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Evolving Fuzzy-rule based Classifier

Classifier consists of fuzzy if-then rules of type

IF (x1 is medium) and (x3 is large) THEN class = 1 with cf = 0.73

Linguistic terms – small, medium small, medium, medium large, large.

Fuzzy membership functions – approximate the confidence in that the crisp value is repre-

sented by the linguistic term.

Three rules connected by OR

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pIllegal Tree

Blind crossover and mutation operators can produce incorrect trees that do not represent

valid rule base.

� Obviously due to the fact that the closure property does not hold here.

What can we do?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pStrongly typed GP

Strongly typed GP – crossover and mutation make explicitly use of type information:

� every terminal has a type,

� every function has types for each of its arguments and a type for its return value,

� the genetic operators are implemented so that they do not violate the type constraints =⇒
only type correct solutions are generated.

Example: Given the representation specified as specified below, consider that we chose IS node

(with return type 1) as a crossing point in the first parent. Then, the crossing point in the second

parent must be either IS or AND node.

STGP can be extended to more complex type systems – multi-level and polymorphic higher-order

type systems.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Primitives sets properties

Sufficiency – it is possible to express a solution to the problem at hand using the elements of

the primitive set.

Example: A sufficient primitive set for Boolean induction is {AND, OR, NOT, x1, x2, ..., xn}.

When a primitive set is insufficient, GP can only develop programs that approximate the desired

solution.

Example: {+, -, *, /, x, 0, 1} is insufficient primitive set for evolving transcendental function.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Initialisation

Dmax is the maximum initial depth of trees.

Full method(each branch has depth = Dmax)

� nodes at depth d < Dmax randomly chosen

from function set F,

� nodes at depth d = Dmax randomly chosen

from terminal set T.

Grow method (each branch has depth ≤ Dmax)

� nodes at depth d < Dmax randomly chosen

from F ∪ T ,

� nodes at depth d = Dmax randomly chosen

from T .

Ramped half-and-half – grow & full method each deliver half of initial population.

� A range of depth limits is used to ensure that trees of various sizes and shapes are generated.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem

Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach

Terminals
� motorial section,

� T = MOVE, LEFT, RIGHT.

Functions
� conditional IF-FOOD-AHEAD – food detection, 2 ar-

guments (is/is not food ahead),

� unconditional PROG2, PROG3 – sequence of 2/3 ac-

tions.

Ant repeats the program until time runs out (600 time

steps) or all the food has been eaten.

Santa Fe trail

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach cont.

Typical solutions in the initial population

� this solution

completely fails in finding and eating the food,

� similarly this one

(IF-FOOD-AHEAD (LEFT)(RIGHT)),

� this one

(PROG2 (MOVE) (MOVE))

just by chance finds 3 pieces of food.

Santa Fe trail

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach cont.

More interesting solutions

� Quilter – performs systematic exploration of the grid,

(PROG3 (RIGHT)

(PROG3 (MOVE) (MOVE) (MOVE))

(PROG2 (LEFT) (MOVE)))

Quilter performance

� Tracker – perfectly tracks the food until the first ob-

stacle occurs, then it gets trapped in an infinite loop.

(IF-FOOD-AHEAD (MOVE) (RIGHT))

Tracker performance

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach cont.

� Avoider – perfectly avoids food!!!

(I-F-A (RIGHT)

(I-F-A (RIGHT)

(PROG2 (MOVE) (LEFT))))

Avoider performance

Average fitness in the initial population is 3.5

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP result

In generation 21, the following solution was found that already navigates an ant so that he eats

all 89 food pieces in the given time.

(I-F-A (MOVE)

(PROG3 (I-F-A (MOVE)

(RIGHT)

(PROG2 (RIGHT)

(PROG2 (LEFT)

(RIGHT))))

(PROG2 (I-F-A (MOVE)

(LEFT))

(MOVE))))

This program solves every trail with the obstacles of the same type as occurs in Santa Fe trail.

Compare the computational complexity with the GA approach!!!

GA approach: 65.536× 200 = 13× 106 trials.

vs.

GP approach: 500× 21 = 10.500 trials.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Trigonometric Identity

Task is to find an equivalent expression to cos(2x).

GP implementation:

� Terminal set T = {x, 1.0}.

� Function set F = {+,−, ∗,%, sin}.

� Training cases: 20 pairs (xi, yi), where xi are values evenly distributed in interval (0, 2π).

� Fitness: Sum of absolute differences between desired yi and the values returned by generated

expressions.

� Stopping criterion: A solution found that gives the error less than 0.01.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1− 2 ∗ sin2x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1− 2 ∗ sin2x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1))

)))))))))

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1− 2 ∗ sin2x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1))

)))))))))

(2 minus the expression on the 2nd and 3rd rows) is almost π/2 so the discovered identity is

cos(2x) = sin(π/2− 2x).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Symbolic Regression

Task is to find a function that fits to training data evenly sampled from interval < −1.0, 1.0 >.

GP implementation:

� Terminal set T = {x}.
� Function set F = {+,−, ∗,%, sin, cos}.
� Training cases: 20 pairs (xi, yi), where xi are values evenly distributed in interval (−1, 1).
� Fitness: Sum of errors calculated over all (xi, yi) pairs.

� Stopping criterion: A solution

found that gives the error less than

0.01.

Besides the desired function other

three were found

� with a very strange behavior outside

the interval of training data,

� though optimal with respect to the

defined fitness.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Effect of Proper Primitive Set Selection

Case study: Decision trees (DT)
� Inner nodes represent simple decisions of type

att > const, att = const

⇒ axis-parallel splits, in some cases not very efficient way to partition the attribute space.

� Leaf node indicates a class to which the sample, which corresponds to the decisions made

along the branch from root to the leaf, belongs.

� Standard learning algorithms – Quinlan’s ID3 (Iterative Dichotomiser 3).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Decision Trees cont.

Oblique/Multivariate DT

� Inner (decision) nodes represent complex rules (functions).

� More flexible splits are possible.

� But may be hard to understand and interpret.

This looks much better, but how to find the rules?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Rule Structure

Root node returns boolean value {true, false}

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pIntertwined Spirals Problem

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Effect of Terminals and Functions Selection

Without any prior knowledge A

� Terminals: Ta = {x, y, R},

� Functions: Fa = {+,−, ?, (> 0)}.

With prior knowledge about the circular characteristics of data

� Polar coordinates.

� Terminals: Tb = {%, ϕ,R}, where % and ϕ are radius and phase of data points,

% =
√
x2 + y2 and ϕ = arctan y

x

� Functions: Fb = {+,−, ∗, (> 0), sin}.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Ta, Fa}

This does not look nice.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Ta, Fa} cont.

Neither does this one.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Tb, Fb}

This is better already.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Tb, Fb} cont.

Wow, this one is really nice!!!

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pReading

� Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008,

http://www.gp-field-guide.org.uk/

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming


