
Ant Colony Optimization & Particle Swarm Optimization

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a4m33bia/start

pOutline

� Ant Colony Optimization – originally proposed for discrete optimization problems

− ACOR – one of the most popular ACO-based algorithms for continuous domains

� Particle Swarm Optimization – originally proposed for real-valued parameter optimizations

− PSO for problems with discrete binary variables

� ACO & PSO

pMotivation

NP-hard problems – no algorithms that could solve large instances of these algorithms to (guar-

anteed) optimality

� Discrete combinatorial problems

Approximate methods – can find solutions of good quality in reasonable time

� Local search/optimization – iteratively improve a complete solution (typically initialized

at random) till it reaches some local optimum.

� Construction algorithms – build a solution making use of some problem-specific heuristic

information.

Ant Colony Optimization (ACO) algorithms – extend traditional construction heuristics with

an ability to exploit experience gathered during the optimization process.

� ACO & PSO

pConstruction Algorithms

Build solutions to a problem under consideration in an incremental way

� starting with an empty initial solution and

� iteratively adding opportunely defined solution components without backtracking

� until a complete solution is obtained.

procedure GreedyConstructionHeuristic

sp = emptysolution
while not complete(sp) do

e = GreedyComponent(sp)

sp = sp
⊗

e

end

return sp
end

Pros/Cons

(+) fast, solutions of reasonable quality

(–) solution may be far from optimum; generate only limited number of different solu-

tions; decisions made at early stages reduce a set of possible steps at latter stages

� ACO & PSO

pAnt Algorithms: Biological Inspiration

Inspired by behavior of real ants living in an ant colony

� Social insects – behave towards survival of the colony

� Simple individual behavior × complex behavior of a colony

Ability to find the shortest path from the colony to the source of food and back using an indirect
communication via pheromone

� Write — ants lay down pheromone on their way to food

� Read – ant detects pheromone (can sense different intensity) laid down by other ants and

can choose a direction of the highest concentration of pheromone.

� Emergence — this simple behavior applied by the whole colony can lead to emergence of

the shortest path.

� ACO & PSO

pExperiments with Real Ants

Nest separated from food with a double-bridge

� Both path of the same length

� At the beginning there is no pheromone

� After some time one of the alternatives gets dominant due to random fluctuations

� ACO & PSO

pBridges with Different Branches

Influence of random fluctuations is significantly reduced and majority of ants go for the shorter

path in the end.

� ACO & PSO

pBridges with Different Branches

In each step 30 new ants go from A to B, and 30 ants from E to D

� All ants go with the same speed 1 s−1

� Each ant deposits down 1 unit of pheromone per 1 time unit

� ACO & PSO

pStigmergy

Stigmergy – two individuals interact indirectly when one of them modifies the environment and

the other responds to the new environment at a later time.

� Physically – by depositing a pheromone the ants modify the place they have visited.

� Locality of information – pheromone is “visible” only to ants that are in its close vicinity.

� Autocatalytic behavior – the more ants follow a trail, the more attractive that trail becomes

for being followed.

The process is thus characterized by a positive feedback loop, where the probability of a

discrete path choice increases with the number of times the same path was chosen before.

Pheromone evaporation – realizes forgetting, which prevents premature convergence to sub-

optimal solutions.

� ACO & PSO

pReal Ants Summary

� Almost blind

� Incapable of achieving complex tasks alone

� Capable of establishing shortest-route paths from their colony to feeding sources and back

� Use stigmergic communication via pheromone trails

� Follow existing pheromone trails with high probability

� ACO & PSO

pArtificial Ants

Similarity with real ants:

� Colony of cooperating ants

� Pheromone trail and stigmergy

� Probabilistic decision making, locality of the strategy

− Prior information given by the problem specification

− Local modification of states, induced by preceding ants

Differences from real ants:

� Discrete world

� Inner states – personal memory with already performed actions

� Ants are not completely blind

� Amount of deposited pheromone is a function of the quality of the solution

� Problem dependent timing of depositing the pheromone

� Extras – local optimization, backtracking

� ACO & PSO

pAnt Colony Optimization Metaheuristic

ACO can be applied to any discrete optimization problem for which some solution construction

mechanism can be conceived.

Artificial ants are stochastic solution construction heuristics that probabilistically build

a solution by iteratively adding solution components to partial solutions by taking into account

� heuristic information on the problem instance being solved, if available,

� (artificial) pheromone trails which change dynamically at run-time to reflect the agents’

acquired search experience.

Stochastic component allows generating a large number of different solutions.

� ACO & PSO

pGeneral ACO Metaheuristic

procedure ACO metaheuristic

scheduleActivities

manageAntActivity()

evaporatePheromone() // forgetting

daemonActions(){optional} // centralized actions

// local search, elitism

end scheduleActivities

end ACO metaheuristic

Steps for implementing ACO:

� Choose appropriate graph representation

� Define positive feedback

� Choose constructive heuristic

� Choose a model for constraint handling (tabu list at TSP)

� ACO & PSO

pAnt System (AS) for TSP

Problem: Given n cities, the goal is to find the shortest path going through all cities and visiting

each exactly once.

� Considers complete graph.

� dij is Euclidean distance from city i to city j

Definition

� m is the number of ants

� τij(t) is the intensity of pheromone on the link (i, j) in time t

� ηij is visibility (heuristic information) expressed by 1/dij

� (1− ρ) evaporation factor, (ρ) is constant through the whole opt. process

� tabuk is dynamically growing vector of cities that have already been visited by k-th ant

� AS iteration – each ant adds one city to the constructed route

� AS cycle – composed of n iterations during which all ants complete their routes

� ACO & PSO

pAS: Pheromone Deposition

1. ∆τ kij =

{
Q/Lk , if k-th ant used the edge (i, j)

0 , otherwise

2. ∆τij =
∑

k ∆τ kij

3. τij(t + n) = ρ · τij(t) + ∆τij

where

� ∆τ kij is the amount of pheromone deposited on the edge (i, j) by k-th ant within a time

interval (t, t + n)

� Q is a constant

� Lk is the length of the route constructed by k-th ant

� ρ must be smaller than 1, otherwise the pheromone would accumulate unboundedly

(recommended is 0.5)

� τij(0) is set to small positive values

� ACO & PSO

pAS: Probabilistic Decision Making

Probability of adding a link (i, j) (where j ∈ {N − tabuk}) into the route

pkij =

{
[τij(t)]

α · [ηij]β/
∑

l[τil(t)]
α · [ηil]β , if j ∈ {N − tabuk}

0 , otherwise

where

� l ∈ {N − tabuk}

� α, β define relative importance of the pheromone and the visibility

Probability is a compromise between

� visibility that prefers closer cities to more distant ones and

� intensity of pheromone that prefers more frequently used edges.

� ACO & PSO

pAS: Cycle

Ant-cycle:

1. Initialization

� time: t = 0

� number of cycles: NC = 0

� pheromone: τij = c

� Initial positioning of m ants to n cities

2. Initialization of tabu lists

3. Ants’ action

� Each ant iteratively builds its route

� Calculate length of the routes Lk for all ants k ∈ (1, . . . ,m)

� Update the shortest route found

� Calculate ∆τ kij and update τij(t + n)

4. Increment discrete time

� t = t + n, NC = NC + 1

5. If(NC < NCmax) then goto step 2

else stop.

� ACO & PSO

pAS: Elitism

Intensity of pheromone is strengthened on edges that lie on the shortest path out of all generated

paths

� Amount of added pheromone: e ·Q/L∗,
where e is a number of elite ants and L∗ is the shortest path

� Beware of premature convergence!

� ACO & PSO

pAS: Evolution of Solution for 10 Cities

After greedily searching the space it is desirable to adapt global information stored in τij(t)

(it is necessary to partially forget)

Stagnation – branching factor is 2, all ants go the same way.

� ACO & PSO

pApplications of ACO Algorithms

Static problems

� Traveling salesman problem

� Quadratic assignment problem

� Job-shop scheduling problem

� Vehicle routing problem

� Shortest common supersequence problem

Dynamic problems

� Network routing

� ACO & PSO

pACO for Continuous Domain: ACOR

Idea: Instead of using a discrete probability distribution to make a probabilistic choice of the new

solution component at each construction step, a continuous probability density function
(PDF) is used to choose a value for variable Xi at construction step i, for i = 1, . . . , n.

ACO ACOR

l

� ACO & PSO

pACOR: Gaussian Kernel PDF

Gaussian kernel – an estimation of multimodal one-dimensional PDF.

Reasonably easy way of sampling using

� – a random number generator that is able to generate random numbers according to a pa-

rameterized normal distribution;

� – a uniform random generator in conjunction with, for instance, the Box–Muller method.

� ACO & PSO

pACOR: Gaussian Kernel PDF

Gaussian kernel for a variable i, Gi(x), as a weighted sum of k one-dimensional Gaussian
functions gil(x).

Gi(x) =

k∑
l=1

ωlg
i
l(x) =

k∑
l=1

ωl
1

σil
√

2π
e
−

(x−µil)
2

2σi
l
2

Parameter vectors

� ω – vector of weights,

� µi – vector of means,

� σi – vector of standard deviations

are calculated from k solutions kept in

solution archive, which represents the

pheromone model.

Solutions in the archive are sorted according

to their rank (solution sl has rank l). solution archive

� ACO & PSO

pACOR: Gaussian Kernel Parameters

� Means – the values of the ith variable of all the solutions in the archive the elements of the

vector µi.

µi = {µi1, . . . , µik} = {si1, . . . , sik}

� Weights – are calculated using a Gaussian function

ωl =
1

qk
√

2π
e
− (l−1)2

2q2k2

with argument l, mean 1.0 and standard deviation qk, where q is a parameter of the algorithm.

Small q → the best-ranked solutions are strongly preferred.

Large q → more uniform weights.

� Standard deviations – for a particular Gaussian function gil , the standard deviation sil is

calculated as the average distance from the chosen solution sl to other solutions in the archive

σil = ξ

k∑
e=1

sie − sil
k − 1

The parameter ξ realizes the pheromone evaporation – the higher the value of ξ, the less

biased is the search towards the solutions stored in the archive.

� ACO & PSO

pACOR: Solution Generation

Each new solution is generated in n construction steps.

Construction step i:

� Select one Gaussian function gil with probability proportional to its weight.

pl =
ωl∑k
r=1 ωr

� Sample the chosen Gaussian function gil .

� ACO & PSO

pACOR: Algorithm Outline

Input: k, m, n, q, ξ

Output: The best solution found

initialize and evaluate k solutions s1, . . . , sk
// sort the solutions and store them in the Archive

Archive = Sort(s1, . . . , sk)

while (termination condition is not reached) do

// Generate m new solutions

for l = 1 to m do

// construct solution

for i = 1 to D do

Select Gaussian gij according to weights

Sample Gaussian gij with parameters µij, σij
end for

Store and evaluate newly generated solution

end for

// Sort solutions and store the best k

Archive = Best(Sort(s1, . . . , sk+m), k)

end while

� ACO & PSO

pParticle Swarm Optimization

Inspired by biological and sociological motivations

� Bird flocks

� Fish schools

� Swarms of insects

� ACO & PSO

pPSO: Characteristics

Population-based optimization technique – originally designed for solving real-valued func-

tion optimizations.

� Applicable for optimizations in rough, discontinuous and multimodal surfaces.

� Suitable for black-box optimizations – does not require any gradient information of the function

to be optimized.

� Conceptually very simple.

� ACO & PSO

pPSO: Characteristics

Each candidate solution of continuous optimization problem, called a particle, is described (en-

coded) by a real vector N -dimensional search space: x = x1, . . . , xn.

A population of particles, called a swarm, is evolved in an iterative process.

A neighborhood relation N is defined in the swarm that determines for any two particles Pi
and Pj whether they are neighbors or not. Different neighborhood topologies can have different

effect on the swarm performance. Often, the whole search space is used as the neighborhood for

each particle.

The particles change their components and fly through the multi-dimensional search space while

interacting to each other.

Particles calculate their fitness value as the quality of their actual position in the search space

w.r.t. the optimized function.

Particles also compare themselves to their neighbors and imitate the best of that neighbors.

� ACO & PSO

pPSO: Particle’s Position and Velocity

Swarm of particles is flying through the parameter space and searching for the optimum.

Each particle is characterized by

� Position vector xi(t)

� Velocity vector vi(t)

particle i swarm

swarm flying over search space i

� ACO & PSO

pPSO: Velocity Update

Update of the i-th particle velocity:

vi(t + 1) = ωvi(t) + C1ϕ1(pbesti(t)− xi(t)) + C2ϕ2(gbest(t)− xi(t))

where

� pbesti(t) – personal best experience; the best value of the fitness function found by the i-th

particle up to time t.

� gbest(t) – global best experience; the best pbestj(t) value of all particles in the neighborhood

of i (i.e. j ∈ N(i)) or the best value out of pbestj(t) values of all particles in the swarm

found up to time t.

� ω – inertial vector.

� ϕ1 and ϕ2 – uniformly distributed random numbers that determine the influence of pbesti(t)

and gbest(t).

� C1 – particle’s self-confidence; controls the contribution towards the self-exploration.

� C2 – swarm confidence; controls the contribution towards the global direction.

� ACO & PSO

pPSO: Velocity Update

Update of the i-th particle velocity:

vi(t + 1) = ωvi(t) + C1ϕ1(pbesti(t)− xi(t)) + C2ϕ2(gbest(t)− xi(t))

� ACO & PSO

pPSO: Position Update

Update of the i-th particle position:

� ACO & PSO

pPSO: Algorithm

Input: Number of particles in the swarm, swarmSize. Typical values are between 20-60.

Output: Position of the approximate global optimum X∗

begin

t = 0

Randomly initialize position and velocity of particles:Xi(0) and Vi(0)

while (termination condition is not reached) do

begin

t = t + 1

calculate fitness f (Xi) of particles in the swarm

update pbesti(t) of particles

update gbest(t) value observed so far in the swarm

adapt velocity of all particles

adapt position of all particles

end

begin

� ACO & PSO

pPSO: Setting the Inertia Factor ω

Static parameter setting

� ω � 1 – only little momentum is preserved from the previous time-step.

ω = 0 – the particle moves in each step totally ignoring information about the past velocity.

� ω > 1 – particles can hardly change their direction which implies a reluctance against conver-

gence towards optimum.

ω > 1 is always used with Vmax to avoid swarm explosion.

Dynamic parameter setting – annealing scheme; ω decreases linearly with time from ω = 0.9

to ω = 0.4.

� Globally explores the search space in the beginning of the run.

� Performs local search in the end.

� ACO & PSO

pPSO: Acceleration Coefficients C1 and C2

Static setting – usually C1 = C2 and range within (0, 4), for example C1 = C2 = 1.494.

Dynamic setting – coefficients vary with time according to

C1 = (C1f − C1i)
i

MAXITER
+ Cli

C2 = (C2f − C2i)
i

MAXITER
+ C2i

� where C1f and C2f are final values for C1 and C2,

C1i and C2i are current values at iteration i, and MAXITER is the maximum number of

iterations.

� Particular scheme: C1 decreases from 2.5 to 0.5; C2 increases from 0.5 to 2.5.

� Effect: Global search during the early phase of the optimization process; convergence to global

optimum at the final stage of the optimization process.

� ACO & PSO

pDiscrete Binary Particle Optimization Swarm Algorithm

Now, the optimization domain are functions of D binary variables, thus the solution is a binary

vector X = {0, 1}D.

Particle characteristics

� Velocity – each particle i has its velocities, vid, representing probabilities of having variable

d set to 1.

Ex.: vid = 0.2 means that there is a twenty percent chance that the i-th particle will have its

d-th variable set to one (80% chance it will be a zero).

� Position – a particular vector of binary values, xid.

The values are sampled from the the vector of particle’s velocities when the particle is evalu-

ated.

Ephemeral position – a particle might have a different actual position at every generation.

� ACO & PSO

pDiscrete PSO: Velocity and Position Update

Velocity update: vid = vid + ϕ1(pid − xid) + ϕ2(pgd − xid)
� xid, pid and pgd are integers in {0, 1}.

� Since vid is a probability, a logistic transformation S(vid) is used to constrain its values within

the interval [0.0, 1.0].

As vid grows, the function S(vid) approaches a one, thus the ”position” of the particle fixes

more probably on the value 1, with less chance of change.

� Parameter Vmax is used to control the ultimate mutation rate of the bit vector;

|vid| < Vmax for all dimensions d ∈ {1, . . . , D}.
Ex.: If Vmax = 6.0, then probabilities will be limited to 0.0025 ≤ S(vid) ≤ 0.9975. Thus

exploration is ensured to some extent even after the population (swarm) has converged w.r.t.

velocities.

The smaller Vmax, the higher mutation rate, and vice versa.

Position update:

xid =

{
1 , if rand() < S(vid)

0 , otherwise

� ACO & PSO

pReading

� Branke J.: Memory Enhanced Evolutionary Algorithms for Changing Optimization Problems,

1999

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.8897

� Branke J.: Evolutionary Approaches to Dynamic Optimization Problems - A Survey, 2001

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.4619

� Yang S.: Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Envi-

ronments. Evolutionary Computation, Vol. 16, No. 3, pp. 385-416, 2008.

� ECiDUE: Evolutionary Computation in Dynamic and Uncertain Environments

http://www.cs.le.ac.uk/people/sy11/ECiDUE/

� ACO & PSO

