Logical AgEnts

Chapter 7

Outline

\diamond Knowledge-based agents
\diamond Wumpus world
\diamond Logic in general-models and entailment
\diamond Propositional (Boolean) logic
\diamond Equivalence, validity, satisfiability
\diamond Inference rules and theorem proving

- forward chaining
- backward chaining
- resolution

Knowledge bases

Knowledge base $=$ set of sentences in a formal language
Declarative approach to building an agent (or other system):
Tell it what it needs to know
Then it can Ask itself what to do-answers should follow from the KB
Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-AgENT( percept) returns an action
    static: KB, a knowledge base
                            t, a counter, initially 0, indicating time
    Tell(KB, Make-Percept-Sentence( percept, t))
    action }\leftarrow\operatorname{Ask}(KB,MAKE-ACtion-QuERy(t)
    Tell(KB, Make-Action-SEntence(action, t))
    t \leftarrow t + 1
    return action
```

The agent must be able to:
Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

Wumpus World PEAS description

Performance measure

gold +1000 , death -1000
-1 per step, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot
Sensors Breeze, Glitter, Smell

Observable??

Wumpus world characterization

Observable?? No-only local perception
Deterministic??

Wumpus world characterization

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified
Episodic??

Wumpus world characterization

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static??

Wumpus world characterization

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move

Discrete??

Wumpus world characterization

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No—sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move

Discrete?? Yes

Single-agent??

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes-Wumpus is essentially a natural feature

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Other tight spots

Breeze in $(1,2)$ and $(2,1)$ \Rightarrow no safe actions

Assuming pits uniformly distributed, $(2,2)$ has pit w/ prob 0.86 , vs. 0.31

Smell in (1,1)
\Rightarrow cannot move
Can use a strategy of coercion:
shoot straight ahead wumpus was there \Rightarrow dead \Rightarrow safe wumpus wasn't there \Rightarrow safe

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language
Semantics define the "meaning" of sentences;
i.e., define truth of a sentence in a world
E.g., the language of arithmetic
$x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
$x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$

Entailment

Entailment means that one thing follows from another:

$$
K B \models \alpha
$$

Knowledge base $K B$ entails sentence α
if and only if
α is true in all worlds where $K B$ is true
E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"
E.g., $x+y=4$ entails $4=x+y$

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)

Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m
$M(\alpha)$ is the set of all models of α
Then $K B \models \alpha$ if and only if $M(K B) \subseteq M(\alpha)$
E.g. $K B=$ Giants won and Reds won $\alpha=$ Giants won

Entailment in the wumpus world

Situation after detecting nothing in $[1,1]$, moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits

3 Boolean choices $\Rightarrow 8$ possible models

Wumpus models

Wumpus models

$K B=$ wumpus-world rules + observations

Wumpus models

$K B=$ wumpus-world rules + observations
$\alpha_{1}=$ " $[1,2]$ is safe", $K B \models \alpha_{1}$, proved by model checking

Wumpus models

$K B=$ wumpus-world rules + observations

Wumpus models

$K B=$ wumpus-world rules + observations
$\alpha_{2}="[2,2]$ is safe", $K B \not \models \alpha_{2}$

Inference

$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Consequences of $K B$ are a haystack; α is a needle.
Entailment $=$ needle in haystack; inference $=$ finding it
Soundness: i is sound if
whenever $K B \vdash_{i} \alpha$, it is also true that $K B \models \alpha$
Completeness: i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Propositional logic: Syntax

Propositional logic is the simplest logic-illustrates basic ideas
The proposition symbols P_{1}, P_{2} etc are sentences
If S is a sentence, $\neg S$ is a sentence (negation)
If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
If S_{1} and S_{2} are sentences, $S_{1} \Rightarrow S_{2}$ is a sentence (implication)
If S_{1} and S_{2} are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

$$
\begin{array}{lccc}
\text { E.g. } & P_{1,2} & P_{2,2} & P_{3,1} \\
& \text { true true } & \text { false }
\end{array}
$$

(With these symbols, 8 possible models, can be enumerated automatically.)
Rules for evaluating truth with respect to a model m :

$\neg S$	is true iff	S	is false	
$S_{1} \wedge S_{2}$	is true iff	S_{1}	is true and	S_{2}
$S_{1} \vee S_{2}$	is true iff true			
$S_{1} \Rightarrow S_{2}$	is true iff	S_{1}	is true or	S_{2}

Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false \vee true $)=$ true \wedge true $=$ true

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

$$
\begin{array}{r}
\neg P_{1,1} \\
\neg B_{1,1} \\
B_{2,1}
\end{array}
$$

"Pits cause breezes in adjacent squares"

Wumpus world sentences

Let $P_{i, j}$ be true if there is a pit in $[i, j]$.
Let $B_{i, j}$ be true if there is a breeze in $[i, j]$.

$$
\begin{array}{r}
\neg P_{1,1} \\
\neg B_{1,1} \\
B_{2,1}
\end{array}
$$

"Pits cause breezes in adjacent squares"

$$
\begin{aligned}
& B_{1,1} \quad \Leftrightarrow \quad\left(P_{1,2} \vee P_{2,1}\right) \\
& B_{2,1} \quad \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

"A square is breezy if and only if there is an adjacent pit"

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
\vdots												
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

Enumerate rows (different assignments to symbols), if KB is true in row, check that α is too

Inference by enumeration

Depth-first enumeration of all models is sound and complete
function TT-Entails? $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
symbols \leftarrow a list of the proposition symbols in $K B$ and α
return TT-CHECK-ALL(KB, α, symbols, [])
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
if Empty? (symbols) then
if PL-True? (KB, model) then return PL-True? (α, model)
else return true
else do
$P \leftarrow \operatorname{FIRST}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols)
return TT-ChECK-AlL($K B, \alpha$, rest, $\operatorname{ExTEnD}(P$, true, model $)$) and TT-ChECK-AlL($K B, \alpha$, rest, Extend $(P$, false, model $))$
$O\left(2^{n}\right)$ for n symbols; problem is co-NP-complete

Logical equivalence

Two sentences are logically equivalent iff true in same models:

$$
\alpha \equiv \beta \text { if and only if } \alpha \models \beta \text { and } \beta \models \alpha
$$

$$
\begin{aligned}
& \hline(\alpha \wedge \beta) \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
&(\alpha \vee \beta) \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
&((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
&((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
& \neg(\neg \alpha) \equiv \alpha \text { double-negation elimination } \\
&(\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
&(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
&(\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
& \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
& \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
&(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
&(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge \\
& \hline
\end{aligned}
$$

Validity and satisfiability

A sentence is valid if it is true in all models,

$$
\text { e.g., True, } \quad A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow B
$$

Validity is connected to inference via the Deduction Theorem:
$K B \models \alpha$ if and only if $(K B \Rightarrow \alpha)$ is valid
A sentence is satisfiable if it is true in some model
e.g., $A \vee B$,

A sentence is unsatisfiable if it is true in no models
e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following:
$K B \models \alpha$ if and only if ($K B \wedge \neg \alpha$) is unsatisfiable
i.e., prove α by reductio ad absurdum

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

- Typically require translation of sentences into a normal form

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland
heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Forward and backward chaining

Horn Form (restricted)
$K B=$ conjunction of Horn clauses
Horn clause $=$
\diamond proposition symbol; or
\diamond (conjunction of symbols) \Rightarrow symbol
E.g., $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$

Modus Ponens (for Horn Form): complete for Horn KBs

Can be used with forward chaining or backward chaining. These algorithms are very natural and run in linear time

Forward chaining

Idea: fire any rule whose premises are satisfied in the $K B$, add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Forward chaining algorithm

function PL-FC-Entails? $(K B, q)$ returns true or false

inputs: $K B$, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known in $K B$
while agenda is not empty do

$$
p \leftarrow \operatorname{Pop}(\text { agenda })
$$

unless inferred $[p]$ do
inferred $[p] \leftarrow$ true
for each Horn clause c in whose premise p appears do decrement count $[c]$ if count $[c]=0$ then do if $\operatorname{HEAD}[c]=q$ then return true $\operatorname{Push}(\operatorname{HEAD}[c]$, agenda)
return false

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Proof of completeness

FC derives every atomic sentence that is entailed by $K B$

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false in m
Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!
4. Hence m is a model of $K B$
5. If $K B \models q, q$ is true in every model of $K B$, including m

General idea: construct any model of $K B$ by sound inference, check α

Backward chaining

Idea: work backwards from the query q :
to prove q by BC,
check if q is known already, or prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

Backward chaining example

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal
$B C$ is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of $B C$ can be much less than linear in size of $K B$

Resolution

Conjunctive Normal Form (CNF—universal) conjunction of disjunctions of literals clauses

$$
\text { E.g., }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)
$$

Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

where ℓ_{i} and m_{j} are complementary literals. E.g.,

$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

Resolution is sound and complete for propositional logic

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable

```
function PL-Resolution ( \(K B, \alpha\) ) returns true or false
    inputs: \(K B\), the knowledge base, a sentence in propositional logic
            \(\alpha\), the query, a sentence in propositional logic
    clauses \(\leftarrow\) the set of clauses in the CNF representation of \(K B \wedge \neg \alpha\)
    new \(\leftarrow\}\)
    loop do
        for each \(C_{i}, C_{j}\) in clauses do
        resolvents \(\leftarrow \mathrm{PL}-\operatorname{Resolve}\left(C_{i}, C_{j}\right)\)
        if resolvents contains the empty clause then return true
            new \(\leftarrow\) new \(\cup\) resolvents
        if new \(\subseteq\) clauses then return false
        clauses \(\leftarrow\) clauses \(\cup\) new
```


Resolution example

$K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1} \alpha=\neg P_{1,2}$

Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions
Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power

