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About the Pattern Recognition Course

� The selection of the topics in the course is mainstream. Besides the
course material, a good wiki page is available for almost all topics
covered in the course.

� We strongly recommend attendance of lectures. In PR&ML, many
issues are intertwined and it is very difficult to understand the
connections (e.g. understanding “why method X should be used instead
of Y in case Z”) just by reading about particular methods.

� Nevertheless, we do not introduce any hard “incentives” e.g. in the form
of a written exam during a lecture. But correctly answering questions on
lectures merits bonus points which can make up to 10% of the semester
total.

� No single textbooks is ideal for Pattern Recognition and Machine
Learning course. The field is still waiting for one.

http://cmp.felk.cvut.cz
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Textbooks

Duda, Hart, Stork: Pattern Classification.
Classical text, 2nd edition, “easy reading”,
about 5–10 available at the CMP library (G102,
H. Pokorna will lend you a copy); some sections
obsolete

Bishop: Pattern Recognition and Machine
Learning. New, popular, but certain topics,
in my opinion, could be presented in a clearer
way

Schlesinger, Hlavac: Ten Lectures
on Statistical and Structural Pattern
Recognition. Advanced text, for those who
want to know more than what is presented in
the course; aims at maximum generality

http://cmp.felk.cvut.cz
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English/Czech Lectures

� Those of you who are fulfilling the requirement of OI to choose one
course in English should attend the lecture in English, i.e. on Monday.
It is acceptable to attend the Friday lectures a few times if you miss the
one on Monday (ENG lectures precede the CZ ones.)

� You may attend both lectures (a couple of students did this last year to
gain better understanding.)

� If English terminology is unclear, ask. As most of the terms will be used
repeatedly, language problems will disappear over time.

http://cmp.felk.cvut.cz
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Pattern Recognition

The course focuses on statistical pattern recognition.

We start with an example called “Dilemma of a lazy short-sighted student”
which introduces most of the basic ingredients of a statistical decision
problem.

http://cmp.felk.cvut.cz
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Example: A Lazy Short-Sighted Student Dilemma

A FEE student with weak eyesight and strong dislike for running is in a
hurry. He needs to get to Albertov where he has arranged to play a poker
game. He may get there on time, but only if he catches a tram going to
Albertov immediately. He will have to pay 100 CZK fine to the poker club if
he’s late. As he exits the Building A at Karlovo namesti, he sees a tram at
the stop:

?

He needs to decide: (a) Run and catch the tram, or (b) not run and miss it?

http://cmp.felk.cvut.cz
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A Lazy Short-Sighted Student Dilemma

new (box-style) tram, line 14 old (round-style) tram, line 22
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The student cannot see the tram numbers, but can recognize the tram type
(new, old). His decision can solely be based on the tram type.

http://cmp.felk.cvut.cz
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A Lazy Short-Sighted Student Dilemma

The student:

� knows that trams 3, 6, 14, 22, 24 stop at Karlovo namesti

� knows that of those, trams 14 and 24 go to Albertov

� observes the tram type x ∈ {old, new}

� knows that the joint probability p(x, k) of a tram of type x ∈ {old, new}
and line number k ∈ {3, 6, 14, 22, 24} is

3 6 14 22 24 p(x)

old 0.05 0.15 0.10 0.25 0.05 0.60
new 0.20 0.00 0.05 0.00 0.15 0.40
p(k) 0.25 0.15 0.15 0.25 0.20

(1)

� He values a needless run at 50 CZK. We already know that missing a
tram to Albertov equals to the loss of 100 CZK.

http://cmp.felk.cvut.cz
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A Lazy Short-Sighted Student Dilemma

(copied from the previous slide) p(x, k) :

3 6 14 22 24 p(x)

old type 0.05 0.15 0.10 0.25 0.05 0.60
new type 0.20 0.00 0.05 0.00 0.15 0.40
p(k) 0.25 0.15 0.15 0.25 0.20

(1)

From this table, we see that:

p(Albertov|old) = p(14|old) + p(24|old) = 0.1/0.6 + 0.05/0.6 = 0.25

(2)
p(Albertov|new) = p(14|new) + p(24|new) = 0.05/0.4 + 0.15/0.4 = 0.5

(3)This gives us an idea of how likely it is that a spotted tram goes in the
desired direction, for both old and new types of trams. But the student
prefers optimal decisions if possible.

http://cmp.felk.cvut.cz
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A Lazy Short-Sighted Student Dilemma

Let the probability that a spotted tram goes to Albertov be p.

If he runs, the expected loss is:

p · 0
↑
catches the
right tram

CZK+ (1− p) · 150
↑
misses the game and
makes unnecessary run

CZK (4)

If he does not run, the expected loss is 100 CZK, no matter what the value
of p is (he always misses the game but does not make an unnecessary run.)
Thus, with p(Albertov|old) = 0.25 and p(Albertov|new) = 0.5 we have

old new
p(Albertov|tram type) 0.25 0.5
Loss if he runs [CZK] 112.5 75
Loss if he does not run [CZK] 100 100

http://cmp.felk.cvut.cz
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A Lazy Short-Sighted Student Dilemma

(copied from the previous slide:)

old new
Loss if he runs [CZK] 112.5 75
Loss if he does not run [CZK] 100 100

Therefore, the best strategy seems to be:

observation

decision do not run run

http://cmp.felk.cvut.cz
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Notes (1)

Recall the table p(x, k) for x ∈ {old, new} and k ∈ {3, 6, 14, 22, 24}:

3 6 14 22 24 p(x)

old 0.05 0.15 0.10 0.25 0.05 0.60
new 0.20 0.00 0.05 0.00 0.15 0.40
p(k) 0.25 0.15 0.15 0.25 0.20

(5)

The notation p(x, k), p(x), p(k) is a shorthand that can lead to ambiguities.
Here, the meanings of p(old), or p(3) are clear.

But if trams were of type 1, 2 and 3, p(3) would have been ambiguous. In
that case, the notation p(x = x′), p(x = x′, k = k′) could be used, e.g.
p(x = old, k = 14). We will use a pXK(x, k), pK(k) notation; pK(3) is the
probability p(k = 3).

The probabilities p(x) and p(k) are called marginal.

In pattern recognition literature, p(k) is called a priori probability.

http://cmp.felk.cvut.cz
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Notes (2)

In this example, there were only four strategies possible:

1. if you see an old tram, run, else don’t run (and miss it)

2. if you see a new tram, run, else don’t run

3. never run

4. always run

Question: Here, the set of observations is X = {old type, new type} and
there are two possible decisions, or actions: {run, don’t run}. What is the
number of strategies in the general case with D possible decisions and |X|
observations ?

http://cmp.felk.cvut.cz
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Formulation of the Statistical PR Problem

Let us make a formal abstraction of the student dilemma. Let:

X be the set of observations. An observation (aka measurement, feature vector) x ∈ X is
what is known about an object.

K be the set of classes. A state k ∈ K is what is not known about an object, it is
unobservable (aka hidden parameter, hidden state, state-of-nature, class)

D be the set of possible decisions (actions).

pXK : X ×K → R be the joint probability that the object is in the state k and the
observation x is made.

W : K ×D → R be a penalty (loss) function, W (k, d), k ∈ K, d ∈ D is the penalty paid if
the object is in a state k and the decision made is d. Defined for so-called Bayesian
problems (will be dealt with soon).

q : X → D be a decision function (rule, strategy) assigning for each x ∈ X the decision
q(x) ∈ D. The quality of the strategy q can s measured by a number of ways, the most
common being the expected (average) loss R(q):

R(q) =
∑
x∈X

∑
k∈K

pXK(x, k)W (k, q(x)) . (6)

http://cmp.felk.cvut.cz
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Statistical PR Problem, Examples (1)

Often, the sets of states K and decisions D coincide.
Such problem is then called classification.

Example 1: Vending machine

Classify coins according to their value. The set
of measurements could be, say, weight, diameter
and electrical resistance, thus X ⊂ R3. The set
of classes is K = {1, 2, 5, 10, 20, 50}, and the set
of decisions to make is D ≡ K.
Note: in many cases, the designer of the
machine will soon discover the need to enlarge
the set of decisions D by a “not a coin” class.

Example 2: Optical Character Recognition (OCR)

⇒ Prove this identity by considering the eigenvalue expansion ...

Here, an observation x is an image (x ∈ X ⊂ R1000000), K = {non-character, a-z, A-Z, ...}

http://cmp.felk.cvut.cz
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Statistical PR Problem, Examples (2)

The observation x can be a number, symbol, function of one or two variables, a graph,
algebraic structure, e.g.:

Application Measurement Decisions
license plate recognition gray-level image characters, numbers
fingerprint recognition 2D bitmap, gray-level image personal identity
banknote verification different sensors {genuine, forgery}
EEG, ECG analysis x(t) diagnosis
dictation machine x(t) words, sentences
speaker identification x(t) 1 of N known identities
speaker verification x(t) {yes, no}
spam filter mail content, sender, ... {spam, ham}
stock value prediction stock history, economic news, ... value
recommender systems purchase history of many users product recommendation(s)

http://cmp.felk.cvut.cz
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Examples of Statistical PR Problems: Notes (1)

� For many examples, most of the possible observations x will never
appear, for most of them no x will be observed more than once.

� For most of the listed examples, there is therefore no hope of knowing
p(x, k).

� For some of the examples, try to estimate the cardinality of the space of
observations X.

� For some of the examples, try to estimate the cardinality of the space of
all possible strategies Q.

http://cmp.felk.cvut.cz
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Examples of Statistical PR Problems: Notes (2)

The given formulation is very general. As seen in the example, the
cardinalities of X and D (K) range from 2 to infinite.

For many applications, the formulation captures all important aspects.
Nevertheless, other important aspect were ignored, e.g.:

� The choice of X, which was assumed given. In many applications, the
choice of X is left to the designer.

� The cost and time of making a measurement was ignored. With a cheap
camera, observations arrive instantly and at minimum cost (of powering
the camera.)
In medical applications, each measurement is costly (disposable material
like vials, expensive hardware to take a scan, labor costs.)

� The time to decision, a strategy was characterized only by its loss.
� The measurements x were viewed as inputs. In many decision processes,
e.g. seeing a doctor, values of initial measurements define what
measurements will be made next.

http://cmp.felk.cvut.cz
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Formulation of the Bayesian Decision Problem

Let the sets X, K and D, the joint probability pXK : X ×K → R and the penalty function
W : K ×D → R be given. For a strategy q : X → D, the expectation of W (k, q(x)) is:

R(q) =
∑
x∈X

∑
k∈K

pXK(x, k)W (k, q(x)) . (7)

The quantity R(q) is called the the Bayesian risk. Find the strategy q∗ which minimizes
Bayesian risk:

q∗ = argmin
q∈X→D

R(q) (8)

where the minimum is over all possible strategies. The minimizing strategy is called Bayesian
strategy.

In the following slides, the identity

pXK(x, k) = pXk(x|k)pK(k) (9)

will be used. Here, a handy notation used in the Schlesinger & Hlavac book is adopted:
pXK(x, k) is a function of two variables x and k, pXk(x|k) is a function of a single variable
x (k is fixed), and pxk(x, k) is a single real number.

http://cmp.felk.cvut.cz
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Finding the Bayesian Strategy (1)

The Bayesian risk R(q∗) for the Bayesian strategy q∗ is

R(q∗) = min
q∈X→D

∑
x∈X

∑
k∈K

pXK(x, k)W (k, q(x)) =
∑
x∈X

min
q(x)∈D

∑
k∈K

pXK(x, k)W (k, q(x))

(10)

=
∑
x∈X

p(x) min
q(x)∈D

∑
k∈K

pKx(k|x)W (k, q(x)) =
∑
x∈X

p(x)min
d∈D

R(x, d) , (11)

where
R(x, d) =

∑
k∈K

pKx(k |x)W (k, d) (12)

is the expectation of loss conditioned on x, called partial risk. From this it follows that
minimization of the Bayesian Risk can be done by minizations of partial risk for each x
independently. Thus, the optimal strategy q∗(x) for each x can obtained as

q∗(x) = argmin
d∈D

∑
k∈K

pKx(k |x)W (k, d) . (13)

http://cmp.felk.cvut.cz


21/39
Application: Classification with 0-1 Loss Function

• The set of possible decisions D and of hidden states K coincide, D = K.

• The loss function assigns a unit penalty if q(x) 6= k, and no penalty otherwise, i.e.

W
(
k, q(x)

)
=

{
0 if q(x) = k
1 if q(x) 6= k

(14)

The partial risk for x is

R(x, d) =
∑
k∈K

pKx(k |x)W (k, d) =
∑
k 6=d

pKx(k |x) = 1− pKx(d |x) , (15)

and the optimal strategy for this x is then

q∗(x) = argmin
d∈D

R(x, d) = argmax
d∈D

pKx(d |x) . (16)

Result: The Bayesian strategy for this problem is: For a given ovservation x, decide for the
state d with the highest a posteriori probability pKx(d |x).

http://cmp.felk.cvut.cz
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Classification with 0-1 Loss Function: Example

Problem: Classify gender based on body height. Observation: x = body height [m], class
set K = D = {1, 2} (1 = woman, 2 = man.) The conditionals p(x|1) and p(x|2) are given
below and the priors (at FEL) are p(1) = 0.15, p(2) = 0.85. Let the loss function be 0-1.

1.10 1.60 1.75 2.200.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

p(x|1)

p(x|2)

1.10 1.60 1.75 2.200.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

p(x|1)p(1)

p(x|2)p(2)

1.10 1.60 1.75 2.20
x [m]

0.0

0.5

1.0

p(1|x)
p(2|x)

Result: The optimal decision strategy is to classify x < 1.56m as women and x > 1.56m as
men.

http://cmp.felk.cvut.cz
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Application: Bayesian Strategy with the Reject Option (1)

Consider an examination where for each question there are three possible
answers: yes, no, not known. If your answer is correct, 1 point is added to
your score. If your answer is wrong, 3 points are subtracted. If your answer is
not known, your score is unchanged. What is the optimal Bayesian strategy
if for each question you know the probabilities that p(yes) is the right answer?

Note that adding a fixed amount to all penalties and multiplying all penalties
by a fixed amount does not change the optimal strategy. Adding 3 and
multiplying by 1/4 leads to 1 point for correct answer, 3/4 for not known
and 0 points of a wrong answer.

Any problem of this type can be transformed to an equivalent problem with
penalty 0 for the correct answer, 1 for the wrong answer, and ε for
not known. In realistic problems, ε ∈ (0, 1), since ε ≥ 1 means it is always
better to guess than to say not known; ε ≤ 0 states that saying not known
is preferred to giving the correct answer.
Let us solve the problem formally.

http://cmp.felk.cvut.cz
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Application: Bayesian Strategy with Reject Option (2)

Let X and K be sets of observations and states, pXK : X ×K → R be a
probability distribution and D = K ∪ {not known} be a set of decisions.

Let us define W (k, d), k ∈ K, d ∈ D:

W (k, d) =


0, if d = k ,

1, if d 6= k and d 6= not known ,
ε, if d = not known .

Find the Bayesian strategy q∗ : X → D. The decision q∗(x) corresponding to
the observation x has to minimize the partial risk,

q∗(x) = argmin
d∈D

∑
k∈K

pKx(k |x)W (k, d) .

http://cmp.felk.cvut.cz


25/39
Application: Bayesian Strategy with Reject Option (3)

Equivalent formulation of partial risk minimization:

q∗(x) =

argmin
d∈K

R(x, d) , if min
d∈K

R(x, d) < R(x, not known) ,

not known , if min
d∈K

R(x, d) ≥ R(x, not known) .

For mind∈K R(x, d), there holds (as before for the 0-1 loss function case):

min
d∈K

R(x, d) = min
d∈K

∑
k∈K

pKx(k |x)W (k, d) (17)

= min
d∈K

∑
k∈K\{d}

pKx(k |x) (18)

= min
d∈K

( ∑
k∈K

pKx(k |x)− pKx(d |x)

)
(19)

= min
d∈K

(1− pKx(d |x)) = 1−max
d∈K

pKx(d |x) . (20)

http://cmp.felk.cvut.cz
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Application: Bayesian Strategy with Reject Option (4)

For R(x, not known), there holds

R(x, not known) =
∑
k∈K

pK|X(k |x)W (k, not known)

=
∑
k∈K

pK|X(k |x) ε = ε . (21)

The decision rule becomes

q∗(x) =

argmax
k∈K

pK|X(k |x) , if 1−max
k∈K

pK|X(k |x) < ε ,

not known , if 1−max
k∈K

pK|X(k |x) ≥ ε .

http://cmp.felk.cvut.cz
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Application: Bayesian Strategy with Reject Option (5)

Strategy q∗(x) can thus be described as follows:

First, find the state k which has the largest a posteriori probability.

If this probability is larger than 1− ε then the optimal decision is k.

If its probability is not larger than 1− ε then the optimal decision is not known .

http://cmp.felk.cvut.cz
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Case of 2 Classes. Likelihood Ratio

� Let the number of classes be two; K = {1, 2}.

� Only conditional probabilities pX|1(x) and pX|2(x) are known.

� The a priori probabilities pK(1) and pK(2) and penalties W (k, d),
k ∈ {1, 2}, d ∈ D, are not known.

� In this situation the Bayesian strategy cannot be created.

http://cmp.felk.cvut.cz
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Likelihood Ratio (1)

If the a priori probabilities pK(k) and the penalty W (k, d) are known then
the decision q∗(x) about the observation x is

q∗(x) = argmin
d

(
pXK(x, 1)W (1, d) + pXK(x, 2)W (2, d)

)
= argmin

d

(
pX|1(x) pK(1)W (1, d) + pX|2(x) pK(2)W (2, d)

)
= argmin

d

(pX|1(x)

pX|2(x)
pK(1)W (1, d) + pK(2)W (2, d)

)
= argmin

d

(
γ(x) c1(d) + c2(d)

)
.

γ(x) – likelihood ratio.

http://cmp.felk.cvut.cz


30/39
Likelihood Ratio (2) – linearity, convex subset of R

The subset of observations X(d∗) for which the decision d∗ should be made
is the solution of the system of inequalities

γ(x) c1(d
∗) + c2(d

∗) ≤ γ(x) c1(d) + c2(d) , d ∈ D \ {d∗} .

� The system is linear with respect to the likelihood ratio γ(x).

� The subset X(d∗) corresponds to a convex subset of the values of the
likelihood ratio γ(x).

� As γ(x) are real numbers, their convex subsets correspond to the
numerical intervals.

http://cmp.felk.cvut.cz
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Likelihood Ratio (3)

Note:
There can be more than two decisions d ∈ D, |D| > 2 for only two states,
|K| = 2.

Any Bayesian strategy divides the real axis from 0 to ∞ into |D| intervals
I(d), d ∈ D. The decision d is made for observation x ∈ X when the
likelihood ratio γ = pX|1(x)/pX|2(x) belongs to the interval I(d).

More particular case which is commonly known:
Two decisions only, D = {1, 2}. Bayesian strategy is characterised by a single
threshold value θ. For an observation x the decision depends only on
whether the likelihood ratio is larger or smaller than θ.

http://cmp.felk.cvut.cz
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Example. 2 Classes, 3 Decisions

Object: a patient examined by the physician.

Observations X: some measurable parameters (temperature, . . . ).

2 unobservable states K = {healthy, sick}.

3 decisions D = {do not cure, weak medicine, strong medicine}.

Penalty function W : K ×D → R

W (k, d) do not cure weak medicine strong medicine
sick 10 2 0

healthy 0 5 10

http://cmp.felk.cvut.cz
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Comments on the Bayesian Decision Problem.

Bayesian recognition is decision-making, where
� Decisions do not influence the state of nature (c.f. Game T., Control
T.).

� A single decisions is made, issues of time are ignored in the model
(unlike in Control Theory where decisions are typically taken
continuously and in real-time)

� Cost of obtaining measurements is not modelled (unlike in Sequential
Decision Theory).

The hidden parameter k (class information) is considered not observable.
Common situations are:

� k could be observed, but at a high cost.
� k is a future state (e.g. of petrol price) and will be observed later.

It is interesting to ponder whether a state can ever be genuinely
unobservable.

http://cmp.felk.cvut.cz
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Generality of the Bayesian task formulation.

Two general properties of Bayesian strategies:

� Each Bayesian strategy corresponds to separation of the space of
probabilities into convex subsets.

� Deterministic strategies are always better than randomized ones.

http://cmp.felk.cvut.cz
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Bayesian Strategies are Deterministic

Instead of q : X → D consider stochastic strategy (probability distributions) qr(d |x).

THEOREM

Let X, K, D be finite sets, pXK : X ×K → R be a probability distribution, W : K ×D → R
be a penalty function. Let qr : D ×X → R be a stochastic strategy, i.e a strategy that
selects decisions d with probability qr(d|x). The risk of the stochastic strategy is:

Rrand =
∑
x∈X

∑
k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) .

In such a case there exists the deterministic strategy q : X → D with the risk

Rdet =
∑
x∈X

∑
k∈K

pXK(x, k)W
(
k, q(x)

)
which is not greater than Rrand.

Note that qr(d|x) has the following properties for all x: (i)
∑

d∈D qr(d |x) = 1 and
(ii)qr(d |x) ≥ 0, d ∈ D.

http://cmp.felk.cvut.cz
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PROOF #1 (Bayesian strategy are deterministic)

Comparing the risks associated with deterministic and stochastic strategies

Rrand =
∑
x∈X

∑
k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) , Rdet =
∑
x∈X

∑
k∈K

pXK(x, k)W
(
k, q(x)

)
it is clear it is sufficient to prove that for every x∑

k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) ≥
∑
k∈K

pXK(x, k)W
(
k, q(x)

)
Let us denote the losses associated with deterministic decision d as
αd =

∑
k∈K pXK(x, k)W

(
k, d
)
and let the loss of the best deterministic strategy be

denoted αd∗ = mind∈D αd. Expressing the stochastic loss in terms of αd we obtain:∑
k∈K

pXK(x, k)
∑
d∈D

qr(d |x)W (k, d) =
∑
d∈D

qr(d |x)
∑
k∈K

pXK(x, k)W (k, d) =
∑
d∈D

qr(d |x)αd

To prove the theorem, it is sufficient to show that
∑

d∈D qr(d |x)αd ≥ αd∗:

∀d ∈ D : αd ≥ αd∗ ⇒
∑
d∈D

qr(d |x)αd ≥
∑
d∈D

qr(d |x)αd∗ = αd∗
∑
d∈D

qr(d |x) = αd∗ 2

.

http://cmp.felk.cvut.cz
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PROOF #2 (Bayesian strategy are deterministic)

Rrand =
∑
x∈X

∑
d∈D

qr(d |x)
∑
k∈K

pXK(x, k)W (k, d) .∑
d∈D qr(d |x) = 1, x ∈ X, qr(d |x) ≥ 0, d ∈ D, x ∈ X.

Rrand ≥
∑
x∈X

min
d∈D

∑
k∈K

pXK(x, k)W (k, d) holds for all x ∈ X, d ∈ D . (22)

Let us denote by q(x) any value d that satisfies the equality∑
k∈K

pXK(x, k)W
(
k, q(x)

)
= min

d∈D

∑
k∈K

pXK(x, k)W (k, d) . (23)

The function q : X → D defined in such a way is a deterministic strategy which is not worse
than the stochastic strategy qr. In fact, when we substitute Equation (23) into the
inequality (22) then we obtain the inequality

Rrand ≥
∑
x∈X

∑
k∈K

pXK(x, k)W
(
k, q(x)

)
.

The risk of the deterministic strategy q can be found on the right-hand side of the preceding
inequality. It can be seen that Rdet ≤ Rrand holds.
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What’s next? (1)

� The first part of the course is about solving statistical pattern recognition problems
when the model pXK(x, k) is known.

� It is very rare that pXK(x, k) is known for a given application. Instead, it is almost
always possible to obtain a set of representative samples T of (measurement, class)
pairs.
Example: Gender recognition. A person labels 1000 face images as male/female.

� One way to proceed is to find and estimate pXK(x, k) from T and proceed as if the
estimate was equal to the true probability. A much more common approach is to obtain
a strategy q (= a classifier) with desirable properties directly from T .
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What’s next? (2)

The next lecture will deal with problems illustrated by a modified version of the Student
Dilemma:

A student with a weak eyesight and a strong dislike for running is in a hurry. He needs to
get to Albertov, where his girlfriend, a medical student is expecting him in 10 minutes. He
might get there on time, but he needs to catch a tram immediately.

As he exits Building A at Karlovo namesti, he sees a tram at the stop. He cannot see the
tram number as he is short-sighted, but he recognizes the tram is the rectangular shaped
“new style” one, not the rounded “old style”.

He knows, as before, the sets X, K, and the joint probability pXK(x, k) for all
x ∈ X, k ∈ K.

He knows that his girlfriend tolerates him being late 20% of the time, and does not even
comment. But she’d dump him if gets above that.

When should he run?

Interestingly, in this case, the student need not assign a cost to running or to the loosing his
girlfriend (which might be rather difficult).

He needs a strategy that will tell him to run as rarely as possible, given the constraint: he
must catch the tram 80% of time else he looses his girlfriend.
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