
Lecture 10: Linking and loading

Lecture 10 / Page 2 AE4B33OSS 2014

Contents

 Linker vs. loader
 Linking the executable
 Libraries
 Loading executable
 ELF – UNIX format
 PE – windows program
 Dynamic libraries

Lecture 10 / Page 3 AE4B33OSS 2014

Background

 Operating system is responsible for starting programs

 Program must be brought into memory and placed within a
process memory space for it to be executed

 User programs go through several steps before being run

 Linkers and loaders prepare program to execution

 Linkers and loaders enable to binds programmer’s abstract
names to concrete numeric values – addresses

Lecture 10 / Page 4 AE4B33OSS 2014

Linker vs. Loader
 Program loading – copy program from secondary storage

into main memory so it’s ready to run
 In some cases it is copying data from disk to memory
 More often it allocate storage, set protections bits, arrange virtual

memory to map virtual addresses to disk space
 Relocation

 each object code program address started at 0
 If program contains multiple subprograms all subprograms must

be loaded at non-overlapping addresses
 In many systems the relocation is done more than once

 Symbol resolution
 The reference from one subprogram to another subprogram is

made by using symbols

 Linker and loader are similar
 Loader does program loading and relocation
 Linker does symbol resolution and relocation
 There exists linking loaders

Lecture 10 / Page 5 AE4B33OSS 2014

Binding of Instructions and Data to Memory

 Compile time: If memory location
is known a priori, absolute code can
be generated; must recompile code
if starting location changes

 Load time: Must generate
relocatable code if memory location
is not known at compile time

 Execution time: Binding delayed
until run time if the process can be
moved during its execution from
one memory segment to another.
Need hardware support for address
maps (e.g., base and limit
registers).

Lecture 10 / Page 6 AE4B33OSS 2014

Two pass linking
 Linker’s input is set of object files, libraries, and

command files.
 Output of the linker is executable file, link/load map

and/or debug symbol file
 Linker uses two-pass approach
 Linker first pass

 Scan from input files segment sizes, definitions and references
 Creates symbol table of definitions and references
 Determine the size of joined segments

 Linker second pass
 Assign numeric location to symbols in new segments
 Reads and relocates the object code, substituting numeric

address for symbol references
 Adjusting memory address according new segments
 Create execution file with correct:

 Header information
 Relocated segments
 New symbol table information
 For dynamic linking linker generates “stub” code or an array of

pointers that need

Lecture 10 / Page 7 AE4B33OSS 2014

Object code
 Compilers and assemblers create object files from source

files

 Object files contains:
 Header information – overall information about file, like size of

the code, size of the data, name of the source file, creation date
 Object code – binary instructions and data
 Relocation – list of places in object code, that have to be fixed

up, when the linker or loader change the address of the object
code

 Symbols – global symbols defined in this object file, this symbols
can be used by other object files

 Debugging information – this information is optional, includes
information for debugger, source file line numbers and local
symbols, description of data structures

Lecture 10 / Page 8 AE4B33OSS 2014

Library
 Library is sequence of object modules
 UNIX files use an “archive” format of file which can be

used for collection of any types of files
 Linking library is iterative process:

 Linker reads object files in library and looks for external symbols
from program

 If the linker finds external symbol it adds the concrete object file
to program and adds external symbols of this library object to
external symbols of program

 The previous steps repeat until new external symbols and
objects are added to program

 There can be dependencies between libraries:
 Object A from lib A needs symbol B from lib B
 Object B from lib B needs symbol C from lib A
 Object C from lib A needs symbol D from lib B
 Object D from lib B needs symbol E from ………….

Lecture 10 / Page 9 AE4B33OSS 2014

UNIX ELF
 Structure for object and executable programs for most

UNIX systems
 Successor of more simple format a.out
 ELF structure is common for relocatble format (object

files), executable format (program from objects), shared
libraries and core image (core image is created if
program fails)

 ELF can be interpreted as a set of sections for linker or
set of segments for loader

 ELF contains:
 ELF header – magic string \177ELF, attributes - 32/64 bit, little-

endian/big-endian, type – relocatable/executable/shared/core
image, architecture SPARC/x86/68K,….

 Data – list of sections and segments depending on ELF type

Lecture 10 / Page 10 AE4B33OSS 2014

ELF relocatable
 Created by compiler and is prepared for linker to create

executable program
 Relocatable files – collection of section defined in header.

Each section is code, or read-only data, or rw data, or
relocation entries, or symbols.

 Attribute alloc means that loader must allocate space for
this section

 Sections:
 .text – code with attribute alloc+exec
 .data – data with initial value, alloc+write
 .rodata – constants with only alloc attribute
 .bss – not initialized data – nobits, alloc+write
 .rel.text, .rel.data, .rel.rodata – relocation information
 .init – initialization code for some languages (C++)
 .symtab, .dynsym – linker symbol tables (regular or dynamic)
 .strtab, .dynstr – table of strings for .symtab resp. .dynsym

(.dynsym has alloc because it’s used at runtime)

Lecture 10 / Page 11 AE4B33OSS 2014

ELF - exucutable
 Similar to ELF-relocatable but the data are arranged so

that are ready to be mapped into memory and run
 Sections are packed into segments, usually code and

read-only data into read-only segment and r/w data into
r/w segment

 Segments are prepared to be loaded at defined address
 Usually it is:

 Stack from 0x8000000
 Text with ro-data from 0x8048000 – 0x48000 is stack size
 Data behind text
 Bss behind data

 Relocation is necessary if dynamic library is colliding with
program – Relocated is dynamic library

 Segments are not align to page size, but the offset is
used and some data are copied twice

Lecture 10 / Page 12 AE4B33OSS 2014

Microsoft Portable Executable format
 Portable executable (PE) is Microsoft format for Win NT.

It is mix of MS-DOS executable, Digital’s VAX VMS, and
Unix System V. It is adapted from COFF, Unix format
between a.out and ELF

 PE is based on resources – cursors, icons, bitmaps,
menus, fonts that are shared between program and GUI

 PE is for paged environment, pages from PE can be
mapped directly into memory

 PE can be executable file (EXE) or shared libraries (DLL)
 PE starts with small DOS.EXE program, that prints “This

program needs Microsoft Windows”
 Then contains PE header, COFF header and “optional”

headers
 Each section is aligned to memory page boundary

Lecture 10 / Page 13 AE4B33OSS 2014

PE sections
 Each section has address in file and size, memory

address and size (not necessarily same, because disk
section use usually 512bytes, page size 4kB)

 Each section is marked with hardware permissions, read,
write, execute

 The linker creates PE file for a specific target address –
imagebase

 If the address space is free than loader do no relocation
 Otherwise (in few cases) the loader has to map the file

somewhere else
 Relocation is done by fix-ups from section .reloc. The PE

is moved as block, each pointer is shifted by fixed offset
(target address – image address). The fix-up contains
position of pointer inside page and type of the pointer.

 Other sections – Exports (mainly for DLL, EXE only for
debugging), Imports (DLL that PE needs), Resources (list
of resources), Thread Local Storage (Thread startup
data)

Lecture 10 / Page 14 AE4B33OSS 2014

Shared libraries - static
 It is efficient to share libraries instead linking the same

library to each program
 For example, probably each program uses function printf

and if you have thousands of programs in computer there
will be thousands of copy printf function.

 The linker search library as usual to find modules that
resolve undefined external symbols. Rather than coping
the contents of module into output file it creates the table
of libraries and modules into executable

 When the program is started the loader finds the libraries
and map them to program address space

 Standards systems shares pages that are marked as
read-only.

 Static shared libraries must used different address.
 Assigning address space to libraries is complicated.

Lecture 10 / Page 15 AE4B33OSS 2014

Dynamic Libraries

 Dynamic Libraries can be relocated to free address
space

 Dynamic Libraries are easier to update. If dynamic library
is updated to new version the program has no change

 It is easy to share dynamic libraries
 Dynamic linking permits a program to load and unload

routines at runtime, a facility that can otherwise be very
difficult to provide

 Routine can be loaded when it is called
 Better memory-space utilization; unused routine is never

loaded
 Useful when large amounts of code are needed to handle

infrequently occurring cases

Lecture 10 / Page 16 AE4B33OSS 2014

Static vs. dynamic linking
Simple example
hello.c:
#include <stdio.h>
int main() {

int n = 24;
printf("%d \tHello, world.\n", n);

}

hello.asm:
.file "hello.c"
.section .rodata

.LC0:
.string "%d \tHello, world.\n"
.text
.p2align 4,,15

.globl main
.type main, @function

main:
leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp
movl %esp, %ebp
pushl %ecx
subl $36, %esp
movl $24, -8(%ebp)
movl -8(%ebp), %eax
movl %eax, 4(%esp)
movl $.LC0, (%esp)
call printf
addl $36, %esp
popl %ecx
popl %ebp
leal -4(%ecx), %esp
ret
.size main, .-main
.ident "GCC: (GNU) 4.2.1 [FreeBSD]"

hello.o: file format elf32-i386-freebsd

SYMBOL TABLE:
00000000 *ABS* 00000000 hello.c
00000000 .text 00000000
00000000 .data 00000000
00000000 .bss 00000000
00000000 .rodata 00000000
00000000 .comment 00000000
00000000 .text 00000034 main
00000000 *UND* 00000000 printf

File Size
hello.c 84
hello.asm 472
hello.o 824
hello-static
197970
hello 4846

Lecture 10 / Page 17 AE4B33OSS 2014

ELF dynamic libraries
 ELF dynamic libraries can be loaded at any address, it

uses position independent code (PIC)
 Global offset table (GOT) contains pointer to all static

data referenced in program
 Lazy procedure linkage with Procedure Linkage Table

(PLT)
 For each dynamic function PLT contain code that use GOT to

find address of this function
 At program load all addresses point to stub – dynamic loader
 After loading dynamic library entry in GOT is changed to real

routine address
 Dynamic loader (library ld.so) finds the library by library

name, major and minor versions numbers. The major
version number guarantee compatibility, the minor
version number should be the highest.

 Dynamic loading can be run explicitly by
dlopen(),dlsym(), … functions

Lecture 10 / Page 18 AE4B33OSS 2014

Dynamic Linking Libraries - DLL

 Similar to ELF dynamic libraries
 Dynamic linker is part of the windows kernel
 DLL is relocated if the address space is not free (windows

call it rebasing)
 Lazy binding postpones binding until execution time
 Each function exported by DLL is identified by a numeric

ordinal and by name
 Addresses of functions are defined in Export Address

table

Lecture 10 / Page 19 AE4B33OSS 2014

Architectural Issues
 Linkers and loaders are extremely sensitive to the

architectural details of CPU and OS
 Mainly two aspects of HW architecture affect linkers

 Program addressing
 Instruction format

 Position independent code – enable to implement
dynamic libraries

 Separate code from data and generate code, that won’t change
regardless of the address at which it is loaded

 ELF – PIC group of code pages followed by group of data pages
 Regardless of where the in the address space the program is

loaded, the offset from the code to the data doesn’t change
 Linker creates Global Offset Table containing pointers to all of

the global data
 Advantage – no load relocation, share memory pages of code

among processes even though they don’t have the same
address

 Disadvantage – code is bigger and slower than non-PIC

End of Lecture 8

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

