Derivatives and Taylor polynomial

Ivana Duricova, 2015

It is given a set $X \subseteq \mathbb{R}^{n}$ and mappings $\mathbf{f}: X \rightarrow \mathbb{R}^{m}$. The aim is to calculate for this mapping Taylor polynomial at a given point \mathbf{x}^{*} and then visualize mapping \mathbf{f} and Taylor polynomial. The method of visualization will vary according to the dimensions of the domain and range of values, but it is always the same for display \mathbf{f} and for the Taylor polynomial.

To repeat (see textbooks):

- For mapping $\mathbf{f}: X \rightarrow \mathbb{R}^{m}$ Taylor polynomial is first order in point \mathbf{x}^{*} mapping $\mathbf{T}_{1}: X \rightarrow \mathbb{R}^{m}$ for given regulation

$$
\mathbf{T}_{1}(\mathbf{x})=\mathbf{f}\left(\mathbf{x}^{*}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

where $\mathbf{f}^{\prime}\left(\mathbf{x}^{*}\right)$ the total derivatives (Jacobi matrix) display \mathbf{f} in point \mathbf{x}^{*}.

- For function $f: X \rightarrow \mathbb{R}$ the Taylor polynomial of second order in point \mathbf{x}^{*} function $T_{2}: X \rightarrow \mathbb{R}$ for given regulation

$$
\begin{equation*}
T_{2}(\mathbf{x})=f\left(\mathbf{x}^{*}\right)+f^{\prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} f^{\prime \prime}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right), \tag{1}
\end{equation*}
$$

where $f^{\prime}\left(\mathbf{x}^{*}\right)$ the total derivative of the function f in point \mathbf{x}^{*} (i.e. row vector of length n) and $f^{\prime \prime}\left(\mathbf{x}^{*}\right)$ the Hessian matrix function f in point \mathbf{x}^{*} (i.e. symmetric matrix $n \times n$ second partial derivatives).
Taylor polynomial for display $\mathbf{f}: X \rightarrow \mathbb{R}^{m}$ is mapping $\mathbf{T}_{2}: X \rightarrow \mathbb{R}^{m}$, whose components are functions (1) for each component of the mapping \mathbf{f}.
Touch it \mathbf{T}_{1} a \mathbf{T}_{2} strictly speaking are not polynomials, because they're not function but mapping. This imprecision in nomenclature is to be tolerated.

We prepare for the task of the following views:

1. $n=1, m=1, X=\langle-3,2\rangle, f(x)=x^{3} / 3+x^{2} / 2-x$
2. $n=1, m=2, X=\langle 0,2 \pi\rangle, \mathbf{f}(x)=\left[\begin{array}{c}\cos x \\ \sin x\end{array}\right]$
3. $n=2, m=1, X=\langle-2,2\rangle \times\langle-2,2\rangle, f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=2 \mathrm{e}^{-\mathbf{x}^{T} \mathbf{x}}$ (e represents Euler's number)
4. $n=2, m=3, X=\langle 0,2 \pi\rangle \times\langle 0,2 \pi\rangle, \mathbf{f}(\mathbf{x})=\mathbf{f}\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}\left(R+r \cos x_{2}\right) \cos x_{1} \\ \left(R+r \cos x_{2}\right) \sin x_{1} \\ r \sin x_{2}\end{array}\right]$
5. $n=2, m=2, X=\langle-1,1\rangle \times\langle-1,1\rangle, \mathbf{f}(\mathbf{x})=\mathbf{f}\left(x_{1}, x_{2}\right)=\mathbf{x} \log \left(1+\mathbf{x}^{T} \mathbf{x}\right)$ (log represents the natural logarithm)
6. $n=1, m=3, X$ It is as described in point 2 , view the show from the point of composition 2 and from the point of view 4.

Process for compilation

Download matlab functions prikladn.m. Number n corresponds to the order in the list above. Each function visualizes the mapping \mathbf{f}, defines at point \mathbf{x}^{*} (designated as $\mathbf{x x}$) and drew him like a red circle. Understand how the images are visualized. For one pair (\mathbf{n}, \mathbf{m}) may be open to more than one method of visualization - consider whether the method is the only one possible. Which images are graphs of functions and which do not?

Your task is to complete the matlab functions T1 a T2, Taylor polynomials which are first and second order for mapping \mathbf{f}. Uncommenting the appropriate lines will be the polynomials displayed in graph.

As a model task we developed for display task number 1. For task number 6 (i.e. the composition of view 2 and 4) Develop only first-order polynomial. For calculating first total derivatives using the chain rule.

Checking the correctness of polynomials is that polynomials have at point \mathbf{x}^{*} with mapping \mathbf{f} common value and the first and second derivatives. Thus, the first order polynomial is always 'tangential' to mapping and second order polynomial approximation is quadratic display.

Required output of exercises:

- Working complemented functions in matlab's code prikladn.m. Instructor run the submitted functions matlab code and based on image immediately see whether everything is in order.
- Written report should include only Taylor polynomials formulas for each mapping (nothing else there may not be).

