
A(E)3M33UI — Exercise B:
Bayesian and non-Bayesian decision task

formulations.

Petr Pošík

February 24, 2015

1 Problem description

We will show the basics of Python programming and in the same time demonstrate
the principles of Bayesian and non-Bayesian decision making on a simple example:
we shall help our physicians diagnose our common diseases.

A person that comes to the doctor’s office may be healthy, or she may have a cold or
a flu. The physician has only 1 type of observation, the measurement of body temper-
ature: it can be below 37, 37-38, 38-39, or over 39 degrees Celsius. The physician must
decide whether the person needs no cure at all, or if she suggests tea and sweat, pre-
scribes antibiotics, or sends the person to a specialist. Can we help the physician design
optimal strategy?

Task 1: Define the sets X, K, and D, and represent them as lists X, K, and D in Python.

2 Bayesian formulation

Task 2: Formulate the task in the Bayesian framework. What other information do we
need?

Task 3: Make sure you understand the given joint probability, pXK.

Based on enough historical data, let’s assume that the joint probability distribution,
pXK, of X and K for people coming to the doctor’s office is as follows:

state K
temperature X healthy cold flu

below 37 0.05 0.03 0.01
37-38 0.05 0.15 0.03
38-39 0.02 0.25 0.10
over 39 0.01 0.10 0.20

1



The above probability distribution is stored in a bit different way (as a DB table) in
the file ex1_pXK.csv.

Task 4: Implement a helper function load_data(filename) to load the data (the joint
distribution and later the penalty matrix).

The function shall return a dictionary, where the first 2 columns in the CSV file
represent the keys, and the third column represents the values.

Task 5: Find in the documentation what the zip() function does and how it can be
used when constructing a dictionary. Try out the following code. It may come handy
in the next task.

>>> keys = ['k1','k2','k3']
>>> values = ['v1','v2','v3']
>>> list(zip(keys,values))

>>> d = dict(zip(keys, values))
>>> d

Task 6: Implement a set of functions allowing you to easilly compute the marginal and
conditional distributions based on pXK.

Implement functions

• get_pX() to compute pX,

• get_pK() to compute pK,

• get_pXgK() to compute pX|K, and

• get_pKgX() to compute pK|X.

Each function shall return a dictionary with properly formed keys and adequately
computed values.

In the following, we will have to iteratively add several values to individual dictio-
nary items. In such situation an error often occurs, that when adding the first value,
the dictionary item does not exist yet. Python offers several solutions to this:

• you can pre-initialize the dictionary with correct starting values (0.0 in our case),

• you can use the dict.get(key,default_value) method, which returns the value
for the key, if the key exists in the dictionary, otherwise it returns the default_value,
or

• you can use the collections.DefaultDict class which allows you to specify how
it should initialize the nonexisting items.

Task 7: Design your own penalty matrix W : K × D → R and store it in exB_W.csv.
Load the data into variable W using the function load_data().

Fill in the table below. Keep the following in mind:

2



• Use penalties between 0 and 1000. If the decision for a particular state does not
imply any costs, assign 0; if the decision is maximally unsuitable for a particular
state, assign 1000.

• Try to incorporate various kinds of costs:

– the cost of insufficient cure, when a strong cure is needed,

– the cost of too strong cure, when not needed,

– the loss of the physician’s reputation if the patient is sent to the specialist
with a trivial illness, etc.

There is no correct penalty assignment; the goal is to show what strategy will be opti-
mal for your penalty matrix.

decision D
state K no tea anti spec

healthy
cold
flu

Fill in the values into the prepared file skeleton in exB_W.csv and load the contents
using function load_data().

Task 8: Make sure you understand what a strategy is in the Bayesian formulation.
Create function make_strategy() which takes a list of possible observations and a list
of corresponding decisions, and returns a strategy, i.e. a dictionary.

For us a strategy shall be represented by a dictionary, so that we can ask q[x] (What
is the decision for observation x?).

Task 9: How many different strategies q : X → D are there?

Task 10: Given all the strategies will have the same keys, we can represent them (at
first) just as a tuple of decisions. All the possible strategies can be generated using the
itertools.product() function. Generate a list of all possible 4-tuples of decisions.

Task 11: Create function make_list_of_strategies(), which takes the list of possible
observations X, and the list of possible decisions D, and produces a list of all possible
strategies, i.e. list of dictionaries.

Task 12: Create function print_strategy() which takes a strategy (dictionary) q and a
list of observations (keys) X, and pretty-prints the strategy so that the order of keys is
such as specified in X.

2.1 Bayesian strategy via complete search

Task 13: Create function risk() which returns the risk for a particular strategy q. What
inputs does the function need?

3



R(q) = ∑
x∈X

∑
k∈K

pXK(x, k) ·W(k, q(x))

Task 14: Create function find_bayesian_strategy(). What inputs does the function
need?

Go through all possible strategies, compute their risks, find the strategy with the
minimal risk. Return a 2-tuple: the Bayesian strategy and its risk.

You may find numpy.argmin() and numpy.argmax() useful.

2.2 Bayesian strategy via partial risks

Task 15: Create function partial_risk(), which returns the partial risk for a particular
decision d and observation x. What other inputs are needed?

R(d, x) = ∑
k∈K

pK|X(k|x) ·W(k, d)

Task 16: Create function find_bayesian_strategy_via_partial_risks().

For each observation, compute the partial risk of all decisions, and assign the de-
cision with the minimal partial risk. Return a 2-tuple: the optimal strategy and its
risk.

3 Estimating the hidden state

Let’s move to a different task - estimating the hidden state K, i.e. D = K.

Task 17: Can the physician say anything about the hidden state of a patient before she
actually sees the patient?

Task 18: If the physician learns a new information about the patient – the body temper-
ature X, she should update her beliefs and maybe change her estimate. Make sure you
understand what a strategy is in this case. How many different strategies q : X → K are
there? Can you create their list?

3.1 MAP estimation

Task 19: Implement function find_MAP_strategy() which returns the hidden state k∗

with the minimal probability of error.

3.2 Minimax formulation

We still want to estimate the object state K based on the observation X. The strategy
should assign a state to each observation with the aim to minimize the maximal prob-
abilities of wrong decision across all true states. We will need only the conditional
probabilities pX|K; priors pK and penalties W are not required.

4



Task 20: Implement function find_minimax_strategy() which returns such a strategy
that minimizes the maximal probability of wrong decisions across all possible states.

A Fallback penalty matrix

If your Bayesian strategy does not show anything interesting, you can try the following
cost matrix:

decision D
state K no tea anti spec

healthy 0 10 300 300
cold 30 0 200 200
flu 1000 800 10 100

This penalty matrix is saved in the file fallback_W.txt. You can just copy it to
exB_W.csv.

5


	Problem description
	Bayesian formulation
	Bayesian strategy via complete search
	Bayesian strategy via partial risks

	Estimating the hidden state
	MAP estimation
	Minimax formulation

	Fallback penalty matrix

