
A(E)3M33UI — Exercise 5:
Learning curve and its use in “model

diagnostics”.

Petr Pošík

March 25, 2014

The goal of this exercise is

• to practice the tree models,

• to introduce the ROC curves,

• to reiterate the difference between training and testing error, the model valida-
tion, and to demonstrate the value of the so-called learning curves.

1 Classification and regression trees

The goal of this section is to get some intuition, what the tree models for regression
and classification look like.

1.1 Regression tree

As in the previous exercises, we shall work with the auto-mpg.csv dataset. In the first
part, we will model the relationship of disp and hp with a regression tree.

Task 1: In ex5-1.py, implement a piece of code which would fit a regression tree with
maximal depths 1, 2, 3, and 5, and will draw their predictions in the same figure over
the date for easy comparison.

Hints:

• Find inspiration in the documentation.

• You shall use sklearn.tree.DecisionTreeRegressor class as the model with a
suitably set parameters.

• To plot the data, use function plot_1D_regr_model() from plotting.py.

1

http://scikit-learn.org/0.13/auto_examples/tree/plot_tree_regression.html#example-tree-plot-tree-regression-py
http://scikit-learn.org/0.13/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor

1.2 Classification tree

Task 2: In ex5-1.py, fill in the necessary code to plot the decision boundary induced
by a classification tree with certain maximal depths. Try various values of maximal
depths, starting from 1.

Hints:

• Use sklearn.tree.DecisionTreeClassifier class as the model.

• To plot the decision boundary, use function plot_2D_class_model() from plotting.py.

2 Receiver operating characteristic (ROC)

So far, when solving a classification task, we have evaluated classifiers based on their
missclassification rate (error) or equavalently based on their accuracy. However, more
detailed information about the classifier performance can be found in the so called
missclassification or confusion matrix.

For the binary classification task, the confusion matrix is just a 2x2 matrix. For each
classifier, its values depend on the threshold used to decide if the example is positive
or negative.

Receiver operating characteristic (ROC) is one of the graphical methods to compare
binary classifiers. It shows how true positive rate (TPR) and false positive rate (FPR)
change according to the change of the threshold which is used to decide to which class
an example belongs. An ideal classifier corresponds to a point (0,1), i.e. TPR = 1, FPR
= 0.

Task 3: Study the example for ROC and the documentation for sklearn.metrics.roc_curve().

Task 4: In ex5-2.py, experiment with the max_depth parameter of the decision tree
model.

Task 5: In ex5-2.py, experiment with the number of features loaded from the mpg
dataset.

Hint: The function load_mpg_for_classification() accepts a list of features that shall
be loaded from the mpg dataset. If you pass no argument to this function, it will use
all the relevant features.

Task 6: In ex5-2.py, try to setup several models so that you can compare them using
ROC curve.

Hints:

• Study the function plot_roc() in plotting.py.

• You can compare several models of different kind, e.g. logistic regression, deci-
sion tree, SVM, etc., or you can compare the same type of model with different
settings, e.g. decision tree with max_depth equal to 1,2,3,. . . .

2

http://scikit-learn.org/0.13/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://en.wikipedia.org/wiki/Confusion_matrix
http://en.wikipedia.org/wiki/Binary_classification
http://en.wikipedia.org/wiki/Receiver_Operating_Characteristic
http://scikit-learn.org/stable/auto_examples/plot_roc.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html

3 Learning curves

A learning curve in machine learning is used to show how the training and testing
error (or accuracy) changes with an increasing number of training examples. It may
be used to detect if we face a high bias or high variance problem, and gives some
indication if obtaining more training examples would help to reach better testing error.

Task 7: The script ex5-3.py shall display a learning curve for a particular model, but it
calls a function which is not implemented yet. In model_evaluation.py, implement the
function compute_learning_curve() which shall take as its arguments

• the model,

• the training dataset sizes for which we want to compute the training and testing
errors,

• the training data set, and

• the testing data set,

and shall produce on its output

• an array of the number of examples used for training,

• an array of training errors corresponding to the number of training examples,

• an array of testing errors corresponding to the number of training examples.

Hints:

• You get the training and testing data sets as input to the function. To simulate
the increasing training dataset size, the function shall iteratively use increasingly
large part of the training data.

• To compute the training error, you should use only the smaller part of the training
data set, i.e. the part that was actually used for training.

• To compute the error, you can use the score() method of the classifiers. Remem-
ber, however, that the method returns accuracy, not the error of the model (but
you can use error = 1-accuracy).

Task 8: Try to display the learning curve several times, it is a stochastic process. Try to
display learning curves for various classifiers. Discuss what you see in the graph. Is
there anything you can do to decrease the error of the classifier?

4 Homework

As usual, finish the exercise at home and submit the completed exercise to upload
system.

3

	Classification and regression trees
	Regression tree
	Classification tree

	Receiver operating characteristic (ROC)
	Learning curves
	Homework

