
A(E)3M33UI — Exercise 2:
Linear regression

Petr Pošík

March 3, 2014

The goal of this exercise is

• to make you more familiar with the general process of model fitting, to

• to help you understand the linear regression model in particular, and to

• to introduce you to the numpy package and its features.

The program code for this exercise is organized in two Python modules:

• ex2.py, which contains the main script for the exercise, and

• linreg.py, which contains the helper functions and is the place where you shall
fill in the majority of your code.

After completion, zip these 2 files and hand in the archive via the Upload system. If
you will not manage to complete the exercise in the lab, finish it as a homework!

1 Problem description

In this exercise, we will use the auto-mpg.csv dataset, which contains examples of cars
and their various features: miles per gallon, number of cylinders, displacement, horse
power, weight, acceleration, manufacturing year, origin (USA, EUR, JAP), and the car
name.

For the simple regression exercise, you shall study the relation of horse power and
displacement, i.e. you shall build the model ĥp = h(disp).

Task 1: Run the ex2.py script. It will end up in an error, but it shall at least plot the
data. Try to estimate the parameters w0 and w1 of the linear model by hand. Fill them
into ex2.py.

2 Computing predictions of a linear model given w0, w1

From the lecture, you should know that the predictions

ŷ = XwT,

1

where X is the [|T| × (D + 1)] matrix of inputs in homogeneous coordinates, w =
(w0, w1) is the (D + 1)-vector of parameters of the linear model, and ŷ is the |T|-vector
of predictions.

Task 2: In linreg.py, create function homogenize(X) which

• takes a [|T| × D] matrix of inputs, and

• produces a [|T| × (D + 1)] matrix of inputs in homogeneous coordinates, i.e. it
prepends a column vector of 1s to X.

Hints: Have a look at:

1. The numpy.ndarray.shape property. How do you learn the number of rows and
columns?

2. The numpy.ones() function. How do you create a [|T| × 1] array of ones?

3. The numpy.hstack() function. How do you add the column of ones to the data X?

Task 3: In linreg.py, create function pred_regr_lin(w,X) which

• takes

1. a (D + 1)-vector of linear model parameters w and

2. a [|T| × D] matrix of inputs X, and

• produces a |T|-vector of estimates ŷ.

Hints:

1. Do not forget to homogenize the inputs.

2. Have a look at the numpy.ndarray.T property. How do you get the transposed
vector wT? Does the transpose have any effect for vectors?

3. Have a look at the numpy.ndarray.dot() method. How do you compute the ma-
trix product XwT?

Now, you should see the predictions of the linear model in the figure. What is the
error that your hand-crafted model makes on the data?

3 Computing the error of the linear model

The linreg.py module contains function compute_cost_regr_lin(w,X,y), i.e. it imple-
ments the J(w, T) function which describes how well the linear model with parameters
w fits the data T. It first computes the predictions of the model, and then calls function
compute_err_MSE(y,yhat) which should return the mean squared error (MSE). This
function, however, is not implemented yet.

Task 4: In linreg.py, create function compute_err_MSE(y,yhat) which

2

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.T.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html

• takes

1. a |T|-vector of true values of y and

2. a |T|-vector of the corresponding predictions ŷ, and

• computes the mean squared error (MSE), i.e. the score used by the least squares
method.

Hints:

• you can compute the sum of squares either

1. by squaring the differences (diffs**2) and then suming them (numpy.sum()),
or

2. by using the dot product of the vector of differences with itself (diffs.dot(diffs).

• Do not forget to divide the sum of squares by the number of training examples.

Task 5: Now, when you have an objective measure of the model fit, try a few times and
find by hand better values of w0 and w1, i.e. values which result in a lower error.

4 Model fitting by minimization of J(w, T)

You have just sought for the best values of w0 and w1 by hand. We can make the
computer to do this operation for us. We shall use the scipy.optimize package.

Task 6: In linreg.py, create function fit_regr_lin_by_minimization(X,y) which

• takes the training data T as input (X,y) and

• returns the (hopefully) optimal values of w as a Numpy array.

Hints:

1. Take a look at the scipy.optimize.minimize() function. For us, it will be suffi-
cient to use it in the form

result = minimize(f, w_init, method='bfgs')

where f is the function (of a single argument) to be minimized, w_init is the
initial guess of the weights, and method='bfgs' chooses the BFGS optimization
method.

2. The resulting values of w can be found in result.x.

3. Function compute_cost_regr_lin(w,X,y) is the implementation of J(w, T), which
we would like to minimize with respect to w. However, we cannot pass this
function to minimize directly, since the call

v = f(w_init)

must pass without any error. There are two possibilities:

3

http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

• either define a local function inside the fit_regr_lin_by_minimization like
this:

def fit_regr_lin_by_minimization(w,X,y):
Possibly some code
def f(w):

return compute_cost_regr_lin(w,X,y)
Some other code

• or define f(w) using the lambda notation:

def fit_regr_lin_by_minimization(w,X,y):
Possibly some code
f = lambda w: compute_cost_regr_lin(w,X,y)
Some other code

Then you can use function f(w) as an argument to minimize.

4. As the initial guess w_init, you can use your hand-crafted w, or e.g. (0, 0), or
(100, 1); it does not matter much in this case.

5 Model fitting using the normal equation

Task 7: In linreg.py, create function fit_regr_lin_by_normal_equation(X,y) which

• takes the training data T as input (X,y), and

• produces optimal values of w as a Numpy array by implementing the equation

w∗ = (XTX)−1XTy.

Hints:

1. Do not forget to homogenize X.

2. You should know how to do matrix-matrix and matrix-vector multiplication us-
ing the numpy.ndarray.dot() method.

3. Have a look at numpy.linalg.inv() function for inverting a matrix.

Now, you should see the predictions of the optimal linear model in the figure. It is
probably not very different from your hand-tuned one.

6 Linear model using scikit.learn package

In the above tasks, you learned how to fit a linear regression model manually for ed-
ucational purposes. Of course, in practice you shall take advantage of a ready-to-use
package. In Python, one possibility is to use the scikit.learn package. It is a collec-
tion of functions and classes for machine learning and modeling. Since we shall use it
in the forthcoming exercises, let’s try the same thing using the scikit.learn API.

4

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html

Task 8: In the respective section of ex2.py, fill in the code to train a linear model and
get its predictions using scikit.learn API.

Hints:

1. Take a look at sklearn.linear_models.LinearRegression.

2. The model fitting is done by the sklearn.linear_models.LinearRegression.fit()
method.

3. The prediction is done by the sklearn.linear_models.LinearRegression.predict()
method.

4. The parameters of the linear model can be found in LinearRegression.intercept_

property (w0), and in LinearRegression.coef_ property (w1, . . . , wD).

7 Multivariate linear regression

So far we have worked with the univariate case, x = x, D = 1. Let’s try similar thing
as above, but for the multivariate case, i.e. try to predict the horse power on the basis
of miles-per-gallon, number of cylinders, displacement, weight and acceleration: ĥp =
h(mpg, cyl, disp, wgt, acc).

Task 9: In the respective section of ex2.py, fill in the code to load the data for multi-
variate regression, train the multivariate model and compute its error.

Hints: Do you really need any?

The resulting error shall be lower than in the case of simple regression, since the model
uses more knowledge about the cars, and can thus account for more variability in the
data.

8 Summary

In this exercise, we have used 3 ways of learning the linear regression model: the
minimization of cost function J, the normal equation, and the scikit-learn ready-to-
use implementation.

The approach based on error minimization is very general and can, in principle, be
used with any kind of model. In the next exercises, we shall mostly use the scikit-learn
methods.

Complete the exercise as a homework, ask questions on the forum, and upload
the solution via Upload system!

5

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

	Problem description
	Computing predictions of a linear model given w0, w1
	Computing the error of the linear model
	Model fitting by minimization of J(bold0mu mumu wwwwww, T)
	Model fitting using the normal equation
	Linear model using scikit.learn package
	Multivariate linear regression
	Summary

