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Robotics: an inter-disciplinary field

Robotics overlaps or has close ties with many fields, including:

• Artificial Intelligence

• Computer Vision

• Machine Learning / Neural Networks

• Cognitive Science

• Electronic / Mechanical Engineering

In fact the differentiation between these fields is sometimes
artificial.
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What is a Robot?

A physically-embodied, artificially intelligent device with sensing
and actuation.

• It can sense. It can act.

• It must think, or process information, to connect sensing and
action.

• Is a washing machine a robot? Most people wouldn’t say so,
but it does have sensing, actuation and processing.

• A possible distinction between appliance and robot (David
Bisset): whether the workspace is physically inside or outside
the device.

• The cognitive ability required of a robot is much higher: the
outside world is complex, and harder to understand and
control.
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Autonomy

• Teleoperated - fully controlled (all outputs) by a human.

• Semi-teleoperated - a human defines a particular goals, a
robot performs some control actions.

• Autonomous - a robot performs a defined goal (by a human or
other system) without continuous human guidance.
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Our focus: mobile robots

• A mobile robot needs actuation for locomotion and sensors for
guidance.

• Ideally untethered and self-contained: power source, sensing,
processing on-board
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The tree key questions in Mobile Robotics

• Where am I?

• Where am I going?

• How do I get there?

• To answer these questions the robot has to
• have a model of the environment (given or autonomously

built),
• perceive and analyze the environment,
• find its position/situation within the environment,
• plan and execute the movement.
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Course outline

• Monday – Lecture

• Introduction – applications, architectures, kinematics, sensors
• Mapping – intro to probability, grid maps, geometric

representations, topological maps

• Tuesday – Lecture

• Planning I – terms, configuration space
• Planning II – roadmaps, potential fields, probabilistic methods
• Bug algorithms

• Wednesday – Lecture

• Localization I – taxonomy, continuous localization
• Localization II – probabilistic methods, Bayes filter, models

• Thursday – Laboratories

• Task definition, intro to Player/Stage and SyRoTek
• Independent work in pairs!

• Friday – Laboratories

• Independent work in pairs (cont.)
• Presentation of the work done
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Mobile robots: state of the art
Mars rovers Spirit and Opportunity (NASA)

• Both had successful missions on Mars in starting in late 2004.
Spirit went ‘silent’ in March 2010; Opportunity is still
operational and is exploring a crater currently.

• 9 cameras (Hazcams, Navcams, Pancams, microscopic).

• Remote human planning combined with local autonomy. Why?

• Increased autonomy as mission has progressed.

• See http://marsrover.nasa.gov/home/.

http://marsrover.nasa.gov/home/
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Mobile robots: state of the art
DARPA Grand Challenge 2005 winner ‘Stanley’ (Stanford University, USA)

• Completed 175 miles desert course autonomously in 6 hours
54 minutes.

• Guided along rough ’corridor’ by GPS.

• Road-following and obstacle avoidance using laser
range-finders and vision.
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Mobile robots: state of the art
DARPA Urban Challenge 2007 winner ‘Boss’ (Carnegie Mellon University, USA)

• Robots had to achieve extended missions in a mocked-up
urban area, obeying traffic laws and avoiding other robots and
cars.

• Much more sophisticated sensor suites than in desert challenge
(lasers, cameras, radars) to achieve all-around awareness.
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Mobile robots: state of the art
iRobot ‘Roomba’ Robot Vacuum Cleaner

• ‘Random bounce’ movement style with short-range IR sensing.
• Over 2 million units sold!
• Second generation and competing products are now aiming at

precise navigation. e.g. Mint robot, Evolution Robotics:
http://www.mintcleaner.com/clean/.

http://www.mintcleaner.com/clean/


Introduction Course outline Applications Architectures Kinematics Sensors

Mobile robots: state of the art
Supplying in a hospital, Motol, Prague

• Rederix automated delivery system

• Delivers beds, bedding, food, medical material

• Remote door opening, elevators control

• 16 distribution points, 400 goals, 500km/day

• Inductive rail, ultrasound sensors, bumpers
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Mobile robots: state of the art
Robot companion

• Robot Pearl in Longwood Retirement Community

• Laser scanner, ultrasound sensors, map

• Reminding periodic activities (eating, hygiene, etc.)
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Mobile robots: state of the art
Robots in hospital

• Robot RP-7, Touch Health’s

• Communication patient ↔ doctor

• Mobile chassis, PC with display and cameras

• Tele-operated, information about a patient
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Mobile robotics applications

• Field Robotics
• Exploration (planetary, undersea, polar).
• Search and rescue (earthquake rescue; demining).
• Mining and heavy transport; container handling.
• Military (unmanned aircraft and submarines, insect robots).

• Service Robotics
• Domestic (Vacuum cleaning, lawnmowing, clearing the

table...?).
• Medical (helping the elderly, hospital delivery, surgical robots).
• Transport (Autonomous cars).
• Entertainment (Sony AIBO, QRIO, Lego Mindstorms,

Robocup competition, many others).
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Cognitive robot architectures

• Deliberative

• Reactive
• Pure reactive
• Subsumption architectures
• Potential fields

• Hybrid
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Deliberative control architecture
Hierarchical

• Serial/horizontal architecture

• ≈ 1960: robotics labs at universities were an important play
field for starting artificial intelligence

• Precise world model assumed
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Shakey robot

• Built at Stanford Research Institute in
1969.

• Focused on automated reasoning and
knowledge representation (box pushing).

• STRIPS - Stanford Research Institute
Problem Solver (1th order predicate logic).

• On a very good day it could formulate
and execute, over a period of hours, plans
involving moving from place to place and
pushing blocks to achieve a goal.
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Deliberative control architecture
Criticism

• Modeling the world too hard and slow.

• Non-linear planning intractable (NP-complete).

• Feedback through world model cumbersome.

• Single chain mapping sensing to action.

• Very general  poor at lots of tasks.

• Passing representations between modules is slow.
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Reactive architectures

• No memory – no look-ahead reacts to the current environmental
stimuli/ sensory information.

• Don’t build world models, don’t plan, use short feedback loops.

• Create many chains that maps sensing to action.

• Very specific  good at one or two tasks.

D.MacFarland: “There are no general purpose animals. . . why should
there be general purpose robots?”
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Reactive architectures

• Simplicity

• Economy.

• Computational tractability.

• Robustness against failure.

• Elegance.

• Agents without environment models must have sufficient
information available from local environment.

• If decisions are based on local environment, how does it take into
account non-local information (i.e., it has a “short-term” view).

• Difficult to make reactive agents that learn.

• Since behavior emerges from component interactions plus
environment, it is hard to see how to engineer specific agents (no
principled methodology exists).

• It is hard to engineer agents with large numbers of behaviors
(dynamics of interactions become too complex to understand).



Introduction Course outline Applications Architectures Kinematics Sensors

Subsumption architecture

• Build the system from bottom up

• Components are tasks achieving behaviors

• Components are executed in parallel

• Components are organized in layers

• Lowest layers handle most basic tasks

• Higher levels exploit the lower levels

• Each component has its tight connection between perception
and action

• Bottom up design process
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Subsumption layers

• First, we design, implement and debug layer 0.

• Next, we design layer 1
• When layer 1 is designed, layer 0 is taken into consideration

and utilized, its existence is subsumed (thus the name of the
architecture).

• As layer 1 is added, layer 0 continues to function.
• Continue designing layers, until the desired task is achieved.
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Suppression and Inhibition

• Higher layers can disable the ones below.
• Avoid-obstacles can stop the robot from moving around.

• Layer 2 can either:
• Inhibit the output of level 1 or
• Suppress the input of level 1

• The process is continued all the way to the top level
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Subsumption architecture
Example
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Mobile robot kinematics

• wheeled

• limbed

• flying

• aquatic

• hybrid
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Wheeled robots - kinematics
Differential drive
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• Two motors, one per wheel: steering achieved by setting
different speeds.

• Wheels run at equal speeds for straight-line motion.

• Wheels run at equal and opposite speeds to turn on the spot.

• Other combinations of speeds lead to motion in a circular arc.
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Wheeled robots - kinematics
Ackermann steering
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• Two motors: one to drive, one to steer.

• Cannot normally turn on the spot.

• Fixed speed and steering angle  a circular path.

• With four wheels, need rear differential and variable
(‘Ackerman’) linkage for steering wheels.
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Wheeled robots - kinematics
Synchro drive
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• Two motors: one rotates all wheels on mechanically coupled
pivots; one drives them all at the same velocity.

• Robot body does not rotate (or needs another motor).
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Wheeled robots - kinematics
Mecanum wheels
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Sensing

• Sensing is usually divided into two categories:

1. Proprioceptive sensing - ‘self-sensing’ of a robot’s internal
state.

2. External sensing - of the world around a robot.

• . . . although sometimes the distinction is not completely clear
(e.g. a magnetic compass would normally be considered
proprioceptive sensing).

• Most mobile robots have various sensors, each specialized in
certain tasks. Combining information from all of these is often
called sensor fusion.
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Dead Reckoning (optical encoders)

• Attached to a rotating object (motor, wheel)
• By measuring rotations it determines displacements, velocity,

and acceleration
• 10-10000 pulses per revolution
• other principles: resolvers, optical correlation odometry

(optical mouse), Doppler sensors
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Heading sensors

• Small error in heading causes constantly growing lateral position
error

• Sensors for heading determination: Compass, gyroscope

• Compass measurement influenced by the environment

• Gyroscopes integrate angular velocities ⇒ drift causes significant
errors

• Precision x price: airline gyros drift 0.1◦/6 hours,CB IMU300 30◦/1
hour
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Range sensors
Ultrasonic sensors (sonars)

• Measure depth by emitting an ultrasonic pulse and timing
interval until echo returns.

• Fairly accurate depth measurement in one direction but can
give ‘noisy’ measurements in the presence of complicated
shapes.

• Robots often have a ring of sonar sensors.
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Range sensors
Laser range-finders

• Very accurate measurement of both depth and direction from
time-of-flight measurement of scanning laser beam

• Normally scans in a 2D plane but 3D versions are also
available

• Rather bulky (and expensive) for small robots
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Range sensors
Infra-red

• Low influence on object’s color

• No need for external clock/control

• Narrow beam

• Nonlinear Output (Voltage-Distance)

• Low sensitivity at higher distances

• Minimum distance (care at design)

• Slow output change (≈ 40 ms)



Introduction Course outline Applications Architectures Kinematics Sensors

Vision based
camera, 3D

• Vision is powerful sense providing enormous amount of
information

• Relatively inexpensive

• Complex sensory processing



Introduction Course outline Applications Architectures Kinematics Sensors

3D sensors

• 360◦HFOV , 0.09◦ angular resolution

• 26.8◦VFOV , 0.4◦ angular resolution (64 lasers)

• 5-15Hz, 1.3 million point per second

• 50 meter range for pavement (≈ 0.10 reflectivity)

• 120 meter range for cars and foliage (≈ 0.80 reflectivity)
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Ground based beacons, GPS

• Active, passive.

• Human use beacon-based navigation.
• Natural beacons (landmarks) like stars, mountains or the sun
• Artificial beacons like lighthouses.

• Used often indoors.

• Outdoors GPS.
• 1 satellite =



Introduction Course outline Applications Architectures Kinematics Sensors

Ground based beacons, GPS

• Active, passive.

• Human use beacon-based navigation.
• Natural beacons (landmarks) like stars, mountains or the sun
• Artificial beacons like lighthouses.

• Used often indoors.

• Outdoors GPS.
• 1 satellite = distance
• 2 satellites =



Introduction Course outline Applications Architectures Kinematics Sensors

Ground based beacons, GPS

• Active, passive.

• Human use beacon-based navigation.
• Natural beacons (landmarks) like stars, mountains or the sun
• Artificial beacons like lighthouses.

• Used often indoors.

• Outdoors GPS.
• 1 satellite = distance
• 2 satellites =intersection of two spheres
• 3 satellites =



Introduction Course outline Applications Architectures Kinematics Sensors

Ground based beacons, GPS

• Active, passive.

• Human use beacon-based navigation.
• Natural beacons (landmarks) like stars, mountains or the sun
• Artificial beacons like lighthouses.

• Used often indoors.

• Outdoors GPS.
• 1 satellite = distance
• 2 satellites =intersection of two spheres
• 3 satellites = circle
• ≥ 4 satellites =



Introduction Course outline Applications Architectures Kinematics Sensors

Ground based beacons, GPS

• Active, passive.
• Human use beacon-based navigation.

• Natural beacons (landmarks) like stars, mountains or the sun
• Artificial beacons like lighthouses.

• Used often indoors.
• Outdoors GPS.

• 1 satellite = distance
• 2 satellites =intersection of two spheres
• 3 satellites = circle
• ≥ 4 satellites = unique solution


	Introduction
	Course outline
	Applications
	Architectures
	Kinematics
	Sensors

