
AE3B33KUI — (feature-based)
classification seminar

authors:
Tomáš Svoboda, Tomáš Werner, David Hurych et al.∗

http://cmp.felk.cvut.cz, 2008

seminar teachers for SS 2012/2013:
Pavel Vostatek†, Eduard Bakštein, Tibor Strašrybka,

Radek Píbil, Radek Mařík, Matěj Holec,
Martin Selecký, Jiří Anýž

February 18, 2013

This is a supplemental material for the (feature-based) classification and
decision making under uncertainty for the bachelor’s track X33KUI seminars.
Assignments for either first or second seminar are just suggested, not

mandatory.
For those interested in a more detailed understanding, we suggest books [1,

3] that are easily readable even for a bachelor student. Book [5] is slightly
more complicated, but supplies an excellent, deep knowledge on the subject.
For practical task, we suggest the Matlab toolbox [4], which can be acquired
for free.

Contents

1 Seminar 1 2
1.1 Bayesian decision-making . 2

∗This learning material is partially based on an older material by V. Franc, T. Pajdla and T. Svoboda.
It has also been inspired by some assignments from the X33RPZ course. A part of the data has been
generously provided by the Eyedea Recognition company. The authors would also like to thank Jiří
Matas for productive discussions.

†If you have any questions, please contact your teacher first. If you are not sure who is your teacher
then email to vostapav@fel.cvut.cz

1

http://cmp.felk.cvut.cz
mailto:vostapav@fel.cvut.cz
mailto:bakstedu@fel.cvut.cz
mailto:strastib@fel.cvut.cz
mailto:radek.pibil@agents.fel.cvut.cz
mailto:marikr@fel.cvut.cz
mailto:holecmat@fel.cvut.cz
mailto:martin.selecky@agents.fel.cvut.cz
mailto:anyzjiri@fel.cvut.cz
http://cmp.felk.cvut.cz/cmp/courses/recognition/Labs/
http://www.eyedea.cz/
mailto:vostapav@fel.cvut.cz

2 Seminar 2 3
2.1 Nearest neighbour classifier . 3
2.2 Linear Classifier . 4

3 Programming exercise – alphanumeric characters recognition 5
3.1 Task Specification . 5
3.2 Individual Exercise . 5
3.3 Example Solution – The Perceptron Algorithm 5

4 Auxiliary code description 7
4.1 Classifier Class . 7
4.2 ClassifierInterface Interface . 7
4.3 MainFrame Class . 8
4.4 Perceptron Class . 8
4.5 NN Class . 9
4.6 Bayes Class . 9

5 Evaluation 9

1 Seminar 1

1.1 Bayesian decision-making

Exercise 1.1 We know the statistical distribution of male and female heights (see the
following table). Infer the most likely gender of a person 168 cm (L) tall.

x XS S M L XL XXL
(0–100) (100–125) (125–150) (150–175) (175–200) (200–∞)

P (x|male) 0,05 0,15 0,2 0,25 0,3 0,05
P (x|female) 0,05 0,1 0,3 0,3 0,25 0

Exercise 1.2 Solve this task for a person that has been picked at random from a group
with 60% of males and 40% of females.

Exercise 1.3 How would you find the probabilities of the conditional distribution p(x|s).
What about the apriori case – p(s)?

Exercise 1.4 Can we possibly find an error-free decision strategy (make no mistakes)?
For what group of people is the inference based on height of a person particularly bad?

Exercise 1.5 Propose a classifier for a gender inference, based on two suitable mea-
surements of a person. Discuss the quality of the possible solutions.

Exercise 1.6 We have a bag of old coins that have been subject to various levels of
use. Coins of different values may therefore be of different sizes. The value of a coin can
be still observed by looking at it. We have a task to partition the coins to the groups

2

of same value according to their values based on their weight. We know that there are
coins of values 1, 2, 5 Kč, that is s ∈ 1, 2, 5. The loss function is:

l(s, d) = abs(hd − hs) ,

where hs is the value of a selected coin and hd is our decision about the value of the
coin.
We have fast and simple to use scales with a 5g precision. Suggest a classification

strategy that would minimize the loss and work. By work we mean actually classifying
the coins manually. This may be the case if we have to achieve an absolute precision. This
is not possible for a vending machine though, as it may accept coins of various values.
Discuss the effect of manual labour on the cumulative loss caused by bad classifications.
Let’s estimate the expected weight of each of the coins based on an experiment. Pick

100 coins, weigh them and record their values. As a result, we are going to have a
training multiset. We may end up with a following table:

s | x 5 10 15 20 25
∑

1 15 10 3 0 0 28
2 7 13 16 6 1 43
5 0 1 2 11 15 29

How many possible strategies are there? Our scales say the coin is 10g, which class
would you choose?

Exercise 1.7 You are given a 10×10 pixel image, and each of the pixels can have one of
256 possible values for intensity. How many features are provided? How many possible
values are there for the whole set of features (values in the observation space)? How
many possible strategies are there?
You are given an image, and you are told that there is a letter in it S = {A, . . . ,Z}.

How would you represent and estimate P (~x|s)?

Exercise 1.8 Propose a classifier for the previous exercise, which assumes features to
be conditionally independent.

2 Seminar 2

Exercise 2.1 Prove that there exists a strategy minimizing the expected risk (loss),
which identical to a strategy maximizing P (s|~x) for the following loss function:

l(s, d) =
{ 0 iff d = s

1 iff d 6= s
. (1)

2.1 Nearest neighbour classifier

Exercise 2.2 Create a single nearest neighbour classifier (1-NN) for a person’s gender
given with height and age as features. If we changed units for height, would the classifier
change?

3

Note: 1-NN is a relatively good classifier, even though it is quite simple. If we
know the actual p. d. [2], then it is possible to show that the probability of a wrong
classification is at most twice as bad asymptotically as the size of the training multiset
approaches ∞.

2.2 Linear Classifier

Another way to avoid the need to estimate and represent probabilities is to design
discrimination functions gs(x)1 directly. One of the options is the linear classifier, which
uses discrimination function in the following form:

gs(~x) = ~w>
s ~x + bs , (2)

where ~ws is the weight vector and the scalar bs for a translation2 along the y-axis (also
called a bias). An object ~x is classified as a member of the class s, whose discrimination
function gs(~x) values is greater than those of the other classes. Therefore, this task
transforms into an optimization problem, where we are looking for parameters of the
linear discrimination functions, which minimize some criterion, e.g., number of wrong
classifications on the given training multiset.

Exercise 2.3 Prove that a set of feature vectors a linear classifier classifies into a single
class is convex.

Exercise 2.4 Is it possible for the training multiset in the Figure 1 to be classified by
a linear classifier perfectly? If so, sketch such a linear classifier.

x2

x1

Figure 1: Training multiset for a 2D feature space with 4 classes.

1Discrimination functions exists even for Bayesian classifiers. Discuss.
2We have used slightly different naming conventions in the lectures gs(~x) = ~b>s ~x + cs.

4

3 Programming exercise – alphanumeric characters recognition

3.1 Task Specification

The task is to classify some letters of car registration plates. Let’s assume that a plate has
already been localized in the picture (see Figures 5 and 6). Letter images are normalized
to be 10× 10 pixels. You have a randomly chosen training data at your disposal. Letter
images are represented by row vectors of brightness values of concatenated columns
of pixels (see Figure 3). Each row in the input text files represents one image. The
train.txt file contains feature vectors and the train_labels.txt file the respective
class labels. Images are just for convenience, the important data is in the ASCII text
files. The result of classification should be a text file with classifications. Each row
should contain a class for the letter on the same line in train.txt.
It is important to realize that this is usually everything what a customer has available.

After you claim you are ready with your code, your customer, seminar teacher in this
case, uses testing data to evaluate your work. The testing data are going to be located in
files test.txt and test_labels.txt. We recommend that you simulate this situation
by splitting the data you were provided into your own training and testing multiset.

3.2 Individual Exercise

Implement the following algorithms in order to complete the exercise explained in the
previous paragraph.

A Nearest Neighbour Classifier Implement a 1-NN classifier. Show that it performs
this task on the training multiset.

Bayesian Classification Implement a naïve Bayes classifier. Assume conditional inde-
pendence of intensities for each of the pixels. Therefore, we have the following
formula for each of the classes:

P (~x|s) = P (x1|s)P (x2|s) . . . P (xn|s) =
n∏

i=1
P (xi|s) , (3)

where xi represents the intensity of the i−th pixels.

3.3 Example Solution – The Perceptron Algorithm

You have one example solution at your disposal, which uses a perceptron for classifica-
tion. A usage example can be found in the main method of MainFrame.java.
The general class Classifier contains the load_matrix I/O method for the feature

vectors loading, load_labels I/O method for the correct classification and count_confusion
classification evaluation. Each of the classifiers is a special class, which inherits the clas-
sifier class. The basic methods are learn and classify.

5

Complete data for class A

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Complete data for class H

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Complete data for class J

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Complete data for class L

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 2: Examples of normalized letter images of registration plates.

2 4 6 8 10

2
4
6
8

10
10 20 30 40 50 60 70 80 90 100

0.511.5

Figure 3: Pixels are represented by a row vector of concatenated columns. First comes
the first column, then the second etc. It is obvious that dark columns of the
letter J, which are in the extreme right part of the image, are at the end of
the data vector.

6

Figure 4: Class diagram.

4 Auxiliary code description

4.1 Classifier Class

This class contains data structures common to all classifiers. Each of the concrete classes
of classifiers (Bayes, nearest neighbor, perceptron) inherit it.

Methods of the Classifier Class

load_matrix(String fileName) – method implements the training or testing data
loading from a file with a name passed as the parameter. The data is then stored
in the matrix field.

load_labels(String fileName) – method implements the training or testing data
loading from a file with a name passed as the parameter.

count_confusion() – this method checks first whether is the classification finished
already. Then this methods checks vector lengths of the suggested labels and
then it compares these vectors against the contents of the file loaded by the
load_labels() method.

4.2 ClassifierInterface Interface

This interface defines the learn() and classify() methods. Every classifier must
implement this interface.

7

4.3 MainFrame Class

MainFrame is the main class, which contains the main() method, which allows for the in-
stantiation of the concrete classifiers and calling their learning and classification methods.
This class also contains methods for serialization/deserialization of the object-classifiers
and allows for writing/reading of these objects along with their learnt parameters. There-
fore, it is not necessary to perform time consuming classifier learning every time, there
is a classification to be performed.

MainFrame class methods

main()

saveClassifier(String fileName, Classifier c) – this method implements the
serialization (writing) of an instance of a concrete classifier c into the file name
filename.

loadClassifier(String fileName) – this method implements the deserialization (read-
ing) of an instance of a concrete classifier c from the file name filename.

4.4 Perceptron Class

This is the concrete implementation of the Perceptron classifier. This class inherits
Classifier and implements the interface ClassifierInterface.

Perceptron Class Methods

learn() - this methods verifies whether the data has been loaded into the matrix and
labels variables, so that it has something to work with. There is also a prepa-
ration phase, which counts the number of possible classifications. Classifications
are mapped to number and the matrix w and vector b that represent the classifier
parameters. Finally there is the learning itself as per the following algorithm:
1. Set ~wy = ~0 and by = 0 and for all y ∈ Y (Y – set of all possible labels).
2. Pick a random incorrectly classified input. If there is no such input, then

STOP, because the learning has finished, by finding parameters for an error-
free classification of the input data.

3. 3. Let (~xt, yt) is an improperly classified input and ŷ is a classification of ~xt

using the current classifier. Adapt the parameters of the classifier according
to the following formulae:

~wyt = ~wyt + ~xt

byt = byt + 1
~wŷ = ~wŷ − ~xt

bŷ = bŷ − 1.

8

4. Continue with step 2.

classify() – this method checks whether the classifier has finished learning and
whether data structures are valid. If no problem has been found, classification
follows according to

ŷ = arg max
y∈Y

~x>
t ~wy + by

with the result being recorded in result_labels and sent to the standard output.

4.5 NN Class

A class for the nearest neighbour classifier ready for implementation. The result of the
classification must then be saved into the result_labels vector (so the confusion table
can be calculated).

4.6 Bayes Class

A Bayes classifier class that is ready for implementation. The result of the classifica-
tion must then be saved into the result_labels vector (so the confusion table can be
calculated).

5 Evaluation

• Implementation of the 1-NN classifier [0–3] pts.

• Implementation of the Bayes classifier given the conditional independence of the
probabilities [0–6] pts.

• Robust implementation capable of handling arbitrary number of classes or feature
vectors [0–1] pt.

• Bonus points for an effective, interesting implementation and additional features
[0–1] pt.

9

Figure 5: Example of an automatic text localization in an image. Further information
can be found at http://cmp.felk.cvut.cz/~zimmerk/lpd/index.html

10

http://cmp.felk.cvut.cz/~zimmerk/lpd/index.html

Figure 6: Example of a commercial application for registration plate recognition in a
video. Demo videos can found at http://cmp.felk.cvut.cz/cmp/courses/
X33KUI/Videos/RP_recognition/ and you have also seen a demonstration of
the first algorithm in the first seminar.

11

http://cmp.felk.cvut.cz/cmp/courses/X33KUI/Videos/RP_recognition/
http://cmp.felk.cvut.cz/cmp/courses/X33KUI/Videos/RP_recognition/

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer Sci-
ence+Bussiness Media, New York, NY, 2006.

[2] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13(1):21–27, January 1967.

[3] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. Wiley
Interscience Publication. John Wiley, New York, 2nd edition, 2001.

[4] Vojtěch Franc and Václav Hlaváč. Statistical pattern recognition toolbox for Matlab.
Research Report CTU–CMP–2004–08, Center for Machine Perception, K13133 FEE
Czech Technical University, Prague, Czech Republic, June 2004. http://cmp.felk.
cvut.cz/cmp/software/stprtool/index.html.

[5] Michail I. Schlesinger and Václav Hlaváč. Ten Lectures on Statistical and Structural
Pattern Recognition. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

12

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

