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Solving problems by Dynamic 

Programming 

Dynamic programming (DP) is a technique for efficiently computing 

recurrences by storing partial results and re-using them when needed. 

We trade space for time, avoiding to repeat the computation of a subproblem. 

 

Guideline to implement DP: 

1. Characterize the recursive structure of an optimal solution 

2. Define recursively the value of an optimal solution 

3. Compute, bottom-up, the cost of a solution 

4. Construct an optimal solution 

 



Dynamic Programming Examples 

1. Minimum cost from Sydney to Perth 

2. Economic Feasibility Study 

3. 0/1 Knapsack problem 

4. Traveling Salesman Problem 

5. Sequence Alignment problem 



Minimum Cost from Sydney to Perth 
Based on M. A. Rosenman: Tutorial - Dynamic Programming Formulation 

http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html 

• Problem definition 

– Travelling from home in Sydney to a hotel in Perth. 

– Three stopovers on the way  

• a number of choices of towns for each stop, 

• a number of hotels to choose from in each city. 

– Each trip has a different distance resulting in a different cost (petrol). 

 Hotels have different costs. 

– The goal is to select a route to and a hotel in Perth so that the overall 

cost of the trip is minimized. 

http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html


Minimum Cost from Sydney to Perth 

• Diagrammatic representation of the problem 

 

Stage: 0 (Sydney) 1 2 3 4 (Perth)  
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Minimum Cost from Sydney to Perth 

• Recursive definition of solution in terms of sub-problem solutions 

 Optimal function: 

 

 with base case 

 where  

 n is the stage (stopover) number, 

 i is a city on stopover n, 

 j is a city from which we can arrive at  i, 

 k is a hotel in city i 
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Minimum Cost from Sydney to Perth 

  start cost from 

A 22 + 70 92 S 

B 8 + 80 88 S 

C 12 + 80 92 S 

Stage 1 



Minimum Cost from Sydney to Perth 

Stage 2 

A B C cost from 

D 92+8+50=150 88+25+50=163 92+13+50=155 150 A 

E 92+10+70=172 88+10+70=168 92+13+70=175 168 B 



Minimum Cost from Sydney to Perth 

Stage 3 

D E cost from 

F 150+25+50=225 168+12+50=230 225 D 

G 150+30+70=250 168+10+70=248 248 E 

H 150+18+70=238 168+8=70=246 238 D 

I 150+27+60=237 168+7+60=235 235 E 



Minimum Cost from Sydney to Perth 

Stage 4 
F G H I cost from 

J 225+28+50=303 248+8+50=306 238+20+50=308 235+15+50=300 300 I 

K 225+13+70=308 248+10+70=328 238+10+70=318 235+10+70=315 308 F 

L 225+15+60=300 248+10+60=318 238+10+60=308 235+7+60=302 300 F 



Minimum Cost from Sydney to Perth 

Stage 4 
F G H I cost from 

J 225+28+50=303 248+8+50=306 238+20+50=308 235+15+50=300 300 I 

K 225+13+70=308 248+10+70=328 238+10+70=318 235+10+70=315 308 F 

L 225+15+60=300 248+10+60=318 238+10+60=308 235+7+60=302 300 F 

• Generating solution routes by tracking backwards through the tables 

 Solution_1 = {I, J}  



Minimum Cost from Sydney to Perth 

Stage 3 

• Generating solution routes by tracking backwards through the tables 

 Solution_1 = {E, I, J} 

D E cost from 

F 150+25+50=225 168+12+50=230 225 D 

G 150+30+70=250 168+10+70=248 248 E 

H 150+18+70=238 168+8=70=246 238 D 

I 150+27+60=237 168+7+60=235 235 E 



Minimum Cost from Sydney to Perth 

Stage 2 

• Generating solution routes by tracking backwards through the tables 

 Solution_1 = {B, E, I, J} 

• Question: What is the second optimal solution? 

 

A B C cost from 

D 92+8+50=150 88+25+50=163 92+13+50=155 150 A 

E 92+10+70=172 88+10+70=168 92+13+70=175 168 B 



Economic Feasibility Study  
Based on M. A. Rosenman: Tutorial - Dynamic Programming Formulation 

http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html 

• Problem definition 

– We are asked for an advice how to best utilize a large urban area in an expanding 

town. 

– Envisaged is a mixed project of housing, retail, office and hotel areas. 

– Rental income is a function of the floor areas allocated to each activity. 

– The total floor area is limited to 7 units. 

– The goal is to find the mix of development which will maximize the 

return. 

 

http://people.arch.usyd.edu.au/~mike/DynamicProg/DPTutorial.95.html


Economic Feasibility Study 

Expected annual profit for areas of 0-7 units allocated to each development type 

in $1000 

 



Economic Feasibility Study 

Diagrammatic representation: 
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Economic Feasibility Study 

• Recursive definition of solution in terms of sub-problem solutions 

 Optimal function: 

 

 with base case  

 where  

 n is the stage number corresponding to the development type 

1…Housing 

2…Retail 

3…Office 

4…Hotel 

 A is the total amount of area units allocated in stage n, 

 a is the amount of area units allocated to development type n, 

 R is the return generated by a units of development type n. 

     
0

, max , 1,
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Economic Feasibility Study 

Ri is the return generated by the total number of  area units allocated in i-th stage. 

Di is the number of  area units allocated in (i-1)-th stage. 



Economic Feasibility Study 

21 1 



Economic Feasibility Study 

• Question: Can you generate the optimal solution by tracking backwards 

through the tables? 



Economic Feasibility Study 

• Solution: Housing=2, Retail=2, Office=0, Hotel=3 

 Maximal return = 33 



Counting Paths 

How many ways are there to walk from A to B on this graph, if  you are not 

allowed to “backtrack”?  

That is, all steps should be toward either the East, the South or the Southeast. 



1/0 Knapsack problem 
Based on Dr. Shieu-Hong Lin lecture notes: 

http://csci.biola.edu/csci480spring03/knapsack.pdf 

• Problem definition 

– Input: a set of S={s1,…, sn} of n items where each si has its value vi and 

weight wi, and a knapsack capacity W. 

– The goal is to choose a subset O of S such that the total weight of 

the items chosen does not exceed W and the sum of items vi in O is 

maximal with respect to any other subset that meets the constraint. 

– Note that each item si either is or is not chosen to O. 

 Question: What would be a successful strategy for finding the optimal 

solution if we were allowed to add a fraction xi of each item to the knapsack? 

 

http://csci.biola.edu/csci480spring03/knapsack.pdf


1/0 Knapsack problem 

• Decompose the problem into smaller problems. 

 Let us assume the sequence of items S={s1, s2, s3, …, sn}. 

 Suppose the optimal solution for S and W is a subset O={s2, s4, sk}, in which sk 

is the highest numbered item in the sequence of items: 

  S={s1, s2, s3, s4, …, sk-1, sk, …,sn} 

 Then, O-{sk} is an optimal solution for the sub-problem Sk-1={s1, …, sk-1} and 

capacity W-wk. 

 The value of the complete problem S would simply be the value calculated for 

this sub-problem Sk-1 plus the value vk. 

 



1/0 Knapsack problem 

• Recursive definition of solution in terms of sub-problem solutions. 

 We construct a matrix V[0..n, 0..W], where W is the maximal allowed weight. 

 For 0≤i≤n, and 0≤w≤W, the entry V[i, w] will store the maximum (combined) 

value of any subset of items {1, 2, …, i} of (combined) weight at most w. 

 Each value V(i, w) represents the optimal solution to this sub-problem: What 

would the value be if our knapsack weight was just w and we were only 

choosing among the first k items? 

 If we can compute all the entries of this array, then the array entry V(n, W) 

will contain the maximal value of items selected from the whole set S of 

combined weight at most W, that is, the solution to our problem. 

  



1/0 Knapsack problem 

• Recursive definition of solution in terms of sub-problem solutions 

 Optimal function: 

 

  

 with base cases  
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1/0 Knapsack problem 

• Bottom-up computation:  

  

 

 Compute the table using 

 

 row by row. 

     , max , ,  fo1 r 1 ,1  ,, 0i iv V i w wVV i w i w Wi w n        

(0, ) 0   for all 0 , V w w W   ( ,0) 0    for 1V i i n  



1/0 Knapsack problem 

• Example: Let W=10 and 

 

 

 

 

 

 

 

 

 

• The final output is V(4, 10)=90. 

 Question: How do we find the optimal subset of items? 



1/0 Knapsack problem 

• Recovering the items that produce the optimal value: 

– Start at V[n, W] and track backwards through the table. 

 Recall: 

– If V(i, w)=V(i-1, w) then item sk was not added to the knapsack. 

 Continue the trace at V[i-1, w]. 

– If V(i, w)>V(i-1, w) then item sk was added to the knapsack. 

 Continue the trace one row higher at V(i-1, w-wi). 

 

 

 

 

 

• The optimal subset is O={2, 4} in this case. 

     
1 ,0

, max , ,1 1,
i n w W

i iV i wV i w v V i w w
   

      



Traveling Salesman Problem 

• Problem definition 

– Given n cities and the distances dij between any two of them, we wish to 

find the shortest tour going through all cities and back to the starting city.  

 Usually the TSP is given as a G = (V, D) where V = {1, 2, . . . , n} is the 

set of cities, and C is the adjacency distance matrix, with ∀i,j ∈ V, i ≠ j,   

ci,j > 0, the probem is to find the tour with minimal distance weight, that 

starting in 1 goes through all n cities and returns to 1. 

• Known to be an NP-hard problem. 

  It can be solved in O(n!) steps. 



Traveling Salesman Problem 

• Stages – stage t represents t cities visited . 

• Decisions – where to go next. 

• States – we need to know where we have already gone, so states are 

represented by a pair (i, S), where S is the set of t cities already visited and i is 

the last city visited. 

• f(i, S) – length of the shortest path from city i to city 1 through all the cities in 

S (in any order). 

 Ex.:  

f(4,{5,2,3}) – length of the shortest path from city 4 to city 1 through 

cities 5, 2, and 3. 

• Recursive transition from smaller problems to bigger ones: 

 

 

• TSP solution reduces to finding f(1,V-{1}) 

    

})){,(),((min),( jSjfjidistSif
Sj






Traveling Salesman Problem: Example 

 

Distance matrix: 

 

 

t=1:  f(3,{2}) = c32 + f(2,{}) = c32 + c21 = 7+1 = 8;   succ(3,{2}) = 2 

  f(4,{2}) = c42 + f(2,{}) = c42 + c21 = 3+1 = 4;   succ(4,{2}) = 2 

  f(2,{3}) = c23 + f(3,{}) = c23 + c31 = 6+15 = 21;   succ(2,{3}) = 3 

  f(4,{3}) = c43 + f(3,{}) = c43 + c31 = 12+15 = 27;   succ(4,{3}) = 3 

  f(2,{4}) = c24 + f(4,{}) = c24 + c41 = 4+6 = 10;   succ(2,{4}) = 4 

  f(3,{4}) = c34 + f(4,{}) = c34 + c41 = 8+6 = 14;   succ(3,{4}) = 4 
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Traveling Salesman Problem: Example 

 

Distance matrix: 

 

 

t=1:  f(3,{2}) = c32 + f(2,{}) = c32 + c21 = 7+1 = 8;   succ(3,{2}) = 2 

  f(4,{2}) = c42 + f(2,{}) = c42 + c21 = 3+1 = 4;   succ(4,{2}) = 2 

  f(2,{3}) = c23 + f(3,{}) = c23 + c31 = 6+15 = 21;   succ(2,{3}) = 3 

  f(4,{3}) = c43 + f(3,{}) = c43 + c31 = 12+15 = 27;   succ(4,{3}) = 3 

  f(2,{4}) = c24 + f(4,{}) = c24 + c41 = 4+6 = 10;   succ(2,{4}) = 4 

  f(3,{4}) = c34 + f(4,{}) = c34 + c41 = 8+6 = 14;   succ(3,{4}) = 4 

t=2:  f(4,{2,3}) = min{c42 + f(2,{3}), c43 + f(3,{2})}= min{3+21, 12+8} = 20; succ(4,{2,3}) = 3 

 f(3,{2,4}) = min{c32 + f(2,{4}), c34 + f(4,{2})}= min{7+10, 8+4} = 12; succ(3,{2,4}) = 4 

 f(2,{3,4}) = min{c23 + f(3,{4}), c24 + f(4,{3})}= min{6+14, 4+27} = 20; succ(2,{3,4}) = 3 
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Traveling Salesman Problem: Example 

 

Distance matrix: 

 

 

t=1:  f(3,{2}) = c32 + f(2,{}) = c32 + c21 = 7+1 = 8;   succ(3,{2}) = 2 

  f(4,{2}) = c42 + f(2,{}) = c42 + c21 = 3+1 = 4;   succ(4,{2}) = 2 

  f(2,{3}) = c23 + f(3,{}) = c23 + c31 = 6+15 = 21;   succ(2,{3}) = 3 

  f(4,{3}) = c43 + f(3,{}) = c43 + c31 = 12+15 = 27;   succ(4,{3}) = 3 

  f(2,{4}) = c24 + f(4,{}) = c24 + c41 = 4+6 = 10;   succ(2,{4}) = 4 

  f(3,{4}) = c34 + f(4,{}) = c34 + c41 = 8+6 = 14;   succ(3,{4}) = 4 

t=2:  f(4,{2,3}) = min{c42 + f(2,{3}), c43 + f(3,{2})}= min{3+21, 12+8} = 20; succ(4,{2,3}) = 3 

 f(3,{2,4}) = min{c32 + f(2,{4}), c34 + f(4,{2})}= min{7+10, 8+4} = 12; succ(3,{2,4}) = 4 

 f(2,{3,4}) = min{c23 + f(3,{4}), c24 + f(4,{3})}= min{6+14, 4+27} = 20; succ(2,{3,4}) = 3 

t=3:  f(1,{2,3,4}) = min{c12 + f(2,{3,4}), c13 + f(3,{2,4}), c14 + f(4,{2,3})}= min{2+20, 9+12, 10+20}  = 21

 succ(1,{2,3,4}) = 3 
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Traveling Salesman Problem: Example 

 

Distance matrix: 

 

 

t=1:  f(3,{2}) = c32 + f(2,{}) = c32 + c21 = 7+1 = 8;   succ(3,{2}) = 2 

  f(4,{2}) = c42 + f(2,{}) = c42 + c21 = 3+1 = 4;   succ(4,{2}) = 2 

  f(2,{3}) = c23 + f(3,{}) = c23 + c31 = 6+15 = 21;   succ(2,{3}) = 3 

  f(4,{3}) = c43 + f(3,{}) = c43 + c31 = 12+15 = 27;   succ(4,{3}) = 3 

  f(2,{4}) = c24 + f(4,{}) = c24 + c41 = 4+6 = 10;   succ(2,{4}) = 4 

  f(3,{4}) = c34 + f(4,{}) = c34 + c41 = 8+6 = 14;   succ(3,{4}) = 4 

t=2:  f(4,{2,3}) = min{c42 + f(2,{3}), c43 + f(3,{2})}= min{3+21, 12+8} = 20; succ(4,{2,3}) = 3 

 f(3,{2,4}) = min{c32 + f(2,{4}), c34 + f(4,{2})}= min{7+10, 8+4} = 12; succ(3,{2,4}) = 4 

 f(2,{3,4}) = min{c23 + f(3,{4}), c24 + f(4,{3})}= min{6+14, 4+27} = 20; succ(2,{3,4}) = 3 

t=3:  f(1,{2,3,4}) = min{c12 + f(2,{3,4}), c13 + f(3,{2,4}), c14 + f(4,{2,3})}= min{2+20, 9+12, 10+20}  = 21

 succ(1,{2,3,4}) = 3 

Optimal tour: 1  3  4  2  1 
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Sequence Alignment Problem 
Based on Advanced Dynamic Programming Tutorial by Eric C. Rouchka  

http://www.avatar.se/molbioinfo2001/dynprog/adv_dynamic.html 

• Problem definition 

– Given two sequences X and Y of length m and n, respectively, composed 

of characters from alphabet A. 

– The goal is to find the best alignment between the two sequences 

considering the following scoring scheme: 

• Si,j=2 if the residue at position i of sequence X is the same as the 

residue at position j of sequence Y (match score), 

• Si,j=-1 if the residue at position i of sequence X is not the same as 

the residue at position j of sequence Y (mismatch score), 

• Penalty w=-2 if either the residue at position i of sequence X or the 

residue at position j of sequence Y is a space „-‟ (gap penalty). 

Example: 

 X = G A A T T C A G T T A X’: G A A T T C A G T T A  

 Y = G G A T C G A Y’: G G A _ T C _ G _ _ A 

 

http://www.avatar.se/molbioinfo2001/dynprog/adv_dynamic.html


Sequence Alignment 

Example 

 X = G A A T T C A G T T A 

 Y = G G A T C G A 

 m=11 and n=7 

 One of the optimal alignments for these sequences is 

 

 

 

 

 

 with score S = 2-1+2+2-2+2-2+2-2-2+2=3  

G A A T T C A G T T A 
| | | | | | 
G G A  T C  G   A 

+ - + - + + - + - - + 

2 1 2 2 2 2 2 2 2 2 2 



Sequence Alignment 

• The idea: 

 Find an optimal alignment between each pair of prefixes for each of the two 

strings. 

• Decompose the problem into smaller recursive problems. 

 Let: 

– C1 be the right-most character of sequence X, 

– C2 be the right-most character of sequence Y, 

– X‟ be X with C1 “chopped-off”, 

– Y‟ be Y with C2 “chopped-off”. 

 Then there are three recursive sub-problems: 

– S1=align(X‟, Y) 

– S2=align(X, Y‟) 

– S3=align(X‟, Y‟) 

 The solution to the original problem is whichever of these is the biggest: 

– S1-2 

– S2-2 

– S3+2 if C1 equals C2, or S3-1 if C1 and C2 mismatch. 



Sequence Alignment 

• Needleman-Wunsch algorithm: 

1. Matrix initialization and fill step.  

 Construct a score matrix M in which you build up partial solutions. 

2. Traceback step. 

 Determine the actual alignment using the score matrix. 



Sequence Alignment 

• Matrix initialization step. 

 Create a matrix with m+1 columns and n+1 rows. 

 The first row and first column can be initially filled with 0. 

 

 

 

 

 

 

 

 

 

 The idea is that the table will be build from top to bottom, and from left to 

right, and each cell will contain a number that is the best alignment score 

of the two sequence prefixes up to that row and column. 



Sequence Alignment 

• Matrix fill step. 

 In order to find Mi, j for any i, j values Mi-1, j, Mi, j-1 and Mi-1, j-1 are used. 

 For each position, Mi, j is defined to be the maximum score at position i, j: 

 

 

 

 

 

• Interpretation 

– Moving horizontally corresponds to aligning a letter in string 1 with a gap in string 2 

– Moving vertically corresponds to aligning a letter in string 2 with a gap in string 1 

– Moving diagonally corresponds to aligning the two characters, one from each string. 

  

1, ,
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, 1,
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1     (match/mismatch in the diagonal)

max                              (gap in sequence Y)

                             (gap in sequence X)i j
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i j j
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Sequence Alignment 

• In our example, the score at position 1,1 in the matrix can be calculated. 

 Since the first residue in both sequences is a G, S1,1=2, and by the assumption 

stated earlier, w=-2. 

 Thus, M1,1=max[M0,0+2, M1,0-2, M0,1-2]=max[2, -2, -2]. 

 A value of 2 is then placed in position 1,1. 

 There is also an arrow placed back into the cell that resulted in the maximum 

score, M[0,0]. 



Sequence Alignment 

• We continue filing in the cells of the scoring matrix using the same reasoning. 

 Note, there is also an arrow placed back into the cell that resulted in the 

maximum score. 

 In case that there are two different ways to get the maximum score, the 

pointers are placed back to all of the cells that produce the maximum, M[3,2]. 



Sequence Alignment 

• The complete score matrix. 

 The maximum global alignment score for the two sequences is 3. 



Sequence Alignment 

• Traceback step, constructing the actual alignment strings – X’ and Y’. 

 We use the pointers back to all possible predecessors. At each cell, we look to 

see where we move next according to the pointers. 

 Begin at position M[m, n] and just follow the pointers: 

– going up corresponds to adding the character to the left from Y to Y‟ while adding 

a space to X‟, 

– going left corresponds to adding the character above from X to X‟ while adding a 

space to Y‟, 

– going diagonally up and to the left means adding a character from X and Y to X‟ 

and Y‟, respectively. 

 If there are two possible neighbors, one of them is arbitrarily chosen. 



Sequence Alignment 

 

 

 

 

 

 

 

 

 

• Final alignment 

  

  

X‟: G A A T T C A G T T A 

| | | | | | 

Y‟: G G A  T C  G   A 


