
ORM and JPA 2.0

Zdeněk Kouba, Petr Křemen

 KBSS 2010

What is Object-relational mapping ?

● a typical information system architecture:

Presentation Layer Business Logic Data storage

● How to avoid data format transformations when
interchanging data from the (OO-based) presentation layer
to the data storage (RDBMS) and back ?

● How to ensure persistence in the (OO-based) business
logic ?

 KBSS 2010

Example – object model

● When would You stick to one of these options ?

 KBSS 2010

Example – database

● … and how to model it in SQL ?

 KBSS 2010

Object-relational mapping

● Mapping between the database (declarative)
schema and the data structures in the object-
oriented language.

● Let's take a look at JPA 2.0

 KBSS 2010

Object-relational mapping

Relational database

Java object model

Table class

row

column-in-a-row

object (instance-of-a-class)

property
 (instance variable
 with getter and setter)

 KBSS 2010

JPA 2.0

● Java Persistence API 2.0 (JSR-317)
● Although part of Java EE 6 specifications, JPA

2.0 can be used both in EE and SE
applications.

● Main topics covered:
● Basic scenarios

● Controller logic – EntityManager interface
● ORM strategies
● JPQL + Criteria API

 KBSS 2010

JPA 2.0 – Entity Example

● Minimal example (configuration by exception):
@Entity

public class Person {

 @Id

 @GeneratedValue

 private Integer id;

 private String name;

 // setters + getters

}

 KBSS 2010

JPA2.0 – Basic concepts

 KBSS 2010

JPA 2.0 - Basics
● Let's have a set of „suitably annotated“ POJOs, called entities,

describing your domain model.

● A set of entities is logically grouped into a persistence unit.

● JPA 2.0 providers :

– generate persistence unit from existing database,
– generate database schema from existing persistence

unit.
– TopLink (Oracle) … JPA
– EclipseLink (Eclipse) … JPA 2.0

● What is the benefit of the keeping Your domain model in the
persistence unit entities (OO) instead of the database schema
(SQL)

 KBSS 2010

JPA 2.0 – Persistence Context

Relational
Database

Persistent Context

Transaction.begin()
em … instance of EntityManager

em.find(...)
query

em.persist(...)

create

Transaction.commit()
Transaction.rollback()

destroy
This is true for „transaction scoped“ persistence
context. In case of „extended scope“, persistence
context is not destroyed on commit.

Transaction.commit()
em.flush()

em.merge(...)

em.remove(...)

em.refresh()

 KBSS 2010

JPA 2.0 – Persistence Context

Persistent Context

Transaction.begin()

em … instance of EntityManager

create

● Managed entity (inside the peristence context)
● Detached entity (outside of the persistence context)

● em.persist(entity) … persistence context must not contain an entity with the same id
● em.merge(entity) … merging the state of an entity existing inside the persistence context
 and its other incarnation outside

 KBSS 2010

JPA 2.0 – Persistence Context

● In runtime, the application accesses the object
counterpart (represented by entity instances) of
the database data. These (managed) entities
comprise a persistence context (PC).
● PC is synchronized with the database on demand

(refresh, flush) or at transaction commit.

● PC is accessed by an EntityManager instance and
can be shared by several EntityManager instances.

 KBSS 2010

JPA 2.0 – EntityManager
● EntityManager (EM) instance is in fact a

generic DAO, while entities can be understand
as DPO (managed) or DTO (detached).

● Selected operations on EM (CRUD) :
– Create : em.persist(Object o)
– Read : em.find(Object id), em.refresh(Object o)
– Update : em.merge(Object o)
– Delete : em.remove(Object o)
– native/JPQL queries: createNativeQuery, createQuery, etc.
– Resource-local transactions: getTransaction().

[begin(),commit(),rollback()]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

