
NÁVRHOVÉ
VZORY

ÚVOD

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 1

JAVA ZOOLOGY
Java Standard Edition – Java SE

•  Basic types, objects, classes, networking, security,

•  Database access, XML parsing, user interfaces

Java Enterprise Edition – Java EE

•  Large scale, multi-tier, scalable, reliable apps, components

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 2

BUILDING AN APP
How?

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 3

ABSTRACT DATA TYPE

Abstract Data Type

•  Mathematical model for data types

•  Stack (push, top, pop)

•  new Stack / create() - instantiation

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 4

ABSTRACT DATA TYPE
typedef struct stack_Rep stack_Rep; // type: stack instance representation

typedef stack_Rep* stack_T; // type: handle to a stack instance

typedef void* stack_Item // type: value stored in stack instance

stack_T stack_create(void); // creates a new empty stack instance

void stack_push(stack_T s, stack_Item x); // adds an item at the top

stack_Item stack_pop(stack_T s); // removes the top item and returns it

bool stack_empty(stack_T s); // checks whether stack is empty

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 5

BUILDING LARGE APP
ABSTRACT DATA TYPE
#include <stack.h> // includes the stack interface

stack_T s = stack_create(); // creates a new empty stack instance

int x = 17;

stack_push(s, &x); // adds the address of x at the top of the stack

void* y = stack_pop(s); // removes the address of x from the stack and returns it

if(stack_empty(s)) { } // does something if stack is empty

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 6

OBJECT-ORIENTED PROGRAMMING

"objects” may contain

•  data in the form of fields, often known as attributes;

•  code, in the form of procedures, often known as methods.

•  A feature of objects is that an object's procedures can
access and often modify the data fields of the object with
which they are associated (objects have a notion of "this”).

•  In OOP, computer programs are designed by making them
out of objects that interact with one another.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 7

OBJECT-ORIENTED PROGRAMMING

Base properties
•  Dynamic dispatch – method lookup – dynamic (ADT static)

•  Encapsulation

•  Composition / inheritance /delegation

•  Composition - Employee contains address object
•  Inheritance – hierarchy Person - Employee
•  Delegation – alternative to inheritance one entity passing something to another

•  Polymorphism

•  Enables separation of concerns (SoC)
•  Recursion

•  History – SmallTalk 1970

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 8

OBJECT-ORIENTED PROGRAMMING

Best practice of
 composition / inheritance / delegation / encapsulation / polymorphism / ..

•  Design Patterns
•  Erich Gamma
•  Martin Fowler

•  Predefined solutions to typical programmer problems
•  Building blocks for Software Engineers!

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 9

DEF: (SOC)
SEPARATION OF CONCERNS

Dijkstra in 1974

The design principle for separating a computer program into
distinct sections, such that each section addresses a
separate concern.

A concern is a set of information that affects the code of a
computer program.

A concern can be as general as the details of the hardware
the code is being optimized for, or as specific as the name of
a class to instantiate.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 10

SEPARATION OF CONCERNS
..

A program that embodies SoC well is called a modular
program.

Modularity, and hence separation of concerns, is achieved by
encapsulating information inside a section of code that has a
well-defined interface.

Encapsulation is a means of information hiding.

Layered designs in information systems are another
embodiment of separation of concerns

•  (e.g., presentation layer, business logic layer, data access layer, persistence layer)

 Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 11

BUILDING LARGE APP
COMPONENT BASED DEVELOPMENT

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 12

BUILDING LARGE APP
COMPONENT BASED DEVELOPMENT

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 13

•  Emphasizes the separation of concerns

•  Reuse-based approach to defining, implementing and
composing loosely coupled independent components into
systems.

 The notion of component
•  An individual software component is a software package, a

web service, a web resource, or a module that
encapsulates a set of related functions (or data).

•  All system processes are placed into separate components

BUILDING LARGE APP
COMPONENT BASED DEVELOPMENT

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 14

•  Components can produce or consume events and can be
used for event-driven architectures

•  In web services, and more recently, in service-oriented
architectures (SOA), a component is converted by the web
service into a service and subsequently inherits further
characteristics beyond that of an ordinary component.

OBJECT VS. COMPONENT
Component not language specific
•  Organization unit, building block, functional element.
•  Comparison

•  An object is a component
•  Collection of objects is a component

Components connect together, and usually have dependencies, although
we think of a component as an independent functional block.
•  e.g. OSGi standard – automobiles and industry automation
Component has usually specification and realization (Interfaces and
implementation in the Object-based design)

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 15

OBJECT VS.
COMPONENT

Object-based design
– construct app from objects

Component-based design
– construct app from preexisting service-providing components

Properties:
•  Encapsulation
•  Specification – interface
•  Improved reuse and evolution
•  Abstraction

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 16

VALUE OBJECT VS
REFERENCE OBJECT

Object-based design - objects have identity
•  Reference object – e.q. a Customer

•  One object identifies a customer in the real world
•  Any reference to the customer is a pointer to the Customer objects!
•  Changes to the customer object available to all users!
•  Compare identity

•  Value Object - a small object that represents a simple entity like Date, Money
•  Multiple value objects represent the same real world thing
•  Hundred of objects that represent Jun 5th, 2015
•  Comparing dates does not compare identify but the value!

•  Its equality is not based on identity:
•  two value objects are equal when they have the same value,
•  not necessarily being the same object.

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 17

Person joe1 = getJoe();

Person joe2= getJoe();

joe1 == joe2

Person bob = getBob();

bob.born.equals(joe1.born)

COMPONENT IN JAVA EE

Tomas Cerny, Software Engineering, FEE, CTU in Prague, 2016 18

@Entity

Class Person {

 String name;

 String getName() {

 return name;

 }

 void setName(String name) {

 this.name = name;

 }

}

@Stateless

Class PersonService {

 @Inject

 EntityManager em;

 void register(Person person) {

 person = em.persist(person);

 }

}

Usually it is enough to use annotation

Java EE Container at an Application Server recognizes the component
and applies life-cycle

