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JAVA ZOOLOGY 
Java Standard Edition – Java SE 

•  Basic types, objects, classes, networking, security,  

•  Database access, XML parsing, user interfaces 

Java Enterprise Edition – Java EE 

•  Large scale, multi-tier, scalable, reliable apps, components 
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BUILDING AN APP 
How? 
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ABSTRACT DATA TYPE 

Abstract Data Type 

•  Mathematical model for data types 

•  Stack (push, top, pop) 

•  new Stack / create() - instantiation 
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ABSTRACT DATA TYPE 
typedef struct stack_Rep stack_Rep; // type: stack instance representation 

typedef stack_Rep* stack_T;  // type: handle to a stack instance 

typedef void* stack_Item // type: value stored in stack instance

stack_T stack_create(void); // creates a new empty stack instance

void stack_push(stack_T s, stack_Item x); // adds an item at the top 

stack_Item stack_pop(stack_T s); // removes the top item  and returns it

bool stack_empty(stack_T s);  // checks whether stack is empty
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BUILDING LARGE APP 
ABSTRACT DATA TYPE 
#include <stack.h>        // includes the stack interface

stack_T s = stack_create(); // creates a new empty stack instance

int x = 17;

stack_push(s, &x); // adds the address of x at the top of the stack

void* y = stack_pop(s);  // removes the address of x from the stack and returns it

if(stack_empty(s)) { }      // does something if stack is empty
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OBJECT-ORIENTED PROGRAMMING 

"objects” may contain  

•  data in the form of fields, often known as attributes;  

•  code, in the form of procedures, often known as methods.  

•  A feature of objects is that an object's procedures can 
access and often modify the data fields of the object with 
which they are associated (objects have a notion of "this”).  

•  In OOP, computer programs are designed by making them 
out of objects that interact with one another. 
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OBJECT-ORIENTED PROGRAMMING 

Base properties 
•  Dynamic dispatch – method lookup – dynamic (ADT static) 

•  Encapsulation 

•  Composition / inheritance /delegation  

•  Composition - Employee contains address object 
•  Inheritance – hierarchy Person - Employee 
•  Delegation – alternative to inheritance  one entity passing something to another 

•  Polymorphism 

•  Enables separation of concerns (SoC) 
•  Recursion 

•  History – SmallTalk 1970 
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OBJECT-ORIENTED PROGRAMMING 

Best practice of 
  composition / inheritance / delegation / encapsulation / polymorphism / .. 

•  Design Patterns 
•  Erich Gamma 
•  Martin Fowler 

•  Predefined solutions to typical programmer problems 
•  Building blocks for Software Engineers! 
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DEF:  (SOC) 
SEPARATION OF CONCERNS 

Dijkstra in 1974 

The design principle for separating a computer program into 
distinct sections, such that each section addresses a 
separate concern.  

A concern is a set of information that affects the code of a 
computer program.  

A concern can be as general as the details of the hardware 
the code is being optimized for, or as specific as the name of 
a class to instantiate. 
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SEPARATION OF CONCERNS 
.. 

A program that embodies SoC well is called a modular 
program.  

Modularity, and hence separation of concerns, is achieved by 
encapsulating information inside a section of code that has a 
well-defined interface.  

Encapsulation is a means of information hiding. 

Layered designs in information systems are another 
embodiment of separation of concerns  

•  (e.g., presentation layer, business logic layer, data access layer, persistence layer) 
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BUILDING LARGE APP 
COMPONENT BASED DEVELOPMENT 
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BUILDING LARGE APP 
COMPONENT BASED DEVELOPMENT 
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•  Emphasizes the separation of concerns 

•  Reuse-based approach to defining, implementing and 
composing loosely coupled independent components into 
systems.  

 The notion of component 
•  An individual software component is a software package, a 

web service, a web resource, or a module that 
encapsulates a set of related functions (or data). 

•  All system processes are placed into separate components 

 



BUILDING LARGE APP 
COMPONENT BASED DEVELOPMENT 
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•  Components can produce or consume events and can be 
used for event-driven architectures 

•  In web services, and more recently, in service-oriented 
architectures (SOA), a component is converted by the web 
service into a service and subsequently inherits further 
characteristics beyond that of an ordinary component. 



OBJECT VS. COMPONENT 
Component not language specific  
•  Organization unit, building block, functional element. 
•  Comparison 

•  An object is a component 
•  Collection of objects is a component 

Components connect together, and usually have dependencies, although 
we think of a component as an independent functional block.  
•  e.g. OSGi standard – automobiles and industry automation 
Component has usually specification and realization (Interfaces and 
implementation in the Object-based design) 
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OBJECT VS. 
COMPONENT 

Object-based design  
– construct app from objects 
 
 
Component-based design  
– construct app from preexisting service-providing components 
 
Properties: 
•  Encapsulation 
•  Specification – interface 
•  Improved reuse and evolution 
•  Abstraction 
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VALUE OBJECT VS  
REFERENCE OBJECT 

Object-based design - objects have identity 
•  Reference object – e.q. a Customer 

•  One object identifies a customer in the real world 
•  Any reference to the customer is a pointer to the Customer objects! 
•  Changes to the customer object available to all users! 
•  Compare identity 

•  Value Object - a small object that represents a simple entity like Date, Money 
•  Multiple value objects represent the same real world thing 
•  Hundred of objects that represent Jun 5th, 2015 
•  Comparing dates does not compare identify but the value!  

•  Its equality is not based on identity: 
•  two value objects are equal when they have the same value,  
•  not necessarily being the same object. 
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Person joe1 = getJoe(); 

Person joe2= getJoe(); 

joe1 == joe2 

Person bob = getBob(); 

bob.born.equals(joe1.born) 



COMPONENT IN JAVA EE 
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@Entity 

Class Person { 

   String name; 

   String getName() { 

 return name; 

   } 

   void setName(String name) { 

    this.name = name;  

   } 

} 

@Stateless 

Class PersonService { 

 

   @Inject 

   EntityManager em; 

 

   void register(Person person) { 

    person = em.persist(person); 

   } 

} 

Usually it is enough to use annotation 
 
Java EE Container at an Application Server recognizes the component  
and applies life-cycle  


