
A Profile Approach to Using UML Models for Rich
Form Generation

Tomas Cerny
Department of Computer Science and Engineering

Czech Technical University
Prague, Czech Republic

cernyto3@fel.cvut.cz

Eunjee Song
Department of Computer Science

Baylor University
Waco, TX, USA

eunjee song@baylor.edu

Abstract—The Model Driven Development (MDD) has pro-
vided a new way of engineering today’s rapidly changing require-
ments into the implementation. However, the development of user
interface (UI) part of an application has not benefit much from
MDD although today’s UIs are complex software components and
they play an essential role in the usability of an application. As
one of the most common UI examples, consider view forms that
are used for collecting data from the user. View forms are usually
generated with a lot of manual efforts after the implementation.
For example, in case of Java 2 Enterprise Edition (Java EE)
web applications, developers create all view forms manually by
referring to entity beans to determine the content of forms, but
such manual creation is pretty tedious and certainly very much
error-prone and makes the system maintenance difficult. One
promise in MDD is that we can generate code from UML models.
Existing design models in MDD, however, cannot provide all
class attributes that are required to generate the practical code
of UI fragments. In this paper, we propose a UML profile for
view form generation as an extension of the object relational
mapping (ORM) profile. A profile form of hibernate validator is
also introduced to implement the practical view form generation
that includes an user input validation.

Keywords—Keywords: UML User Interface Modeling, Model
Driven Development, Profile, Code Generation

I. INTRODUCTION

The main idea behind the model-driven development
(MDD) is that models, rather than code, should be the primary
artifact where most of software development and maintenance
activities are centered. Despite all its advantages, model-based
user interface tools (e.g., [1], [3]) have not been widely used
in practice [2]. In many cases, the user interfaces (UIs) are
manually created by developers who are usually very much
familiar with the current implementation. The manual develop-
ment like this could work initially for small scale applications,
but is not desirable when the system is under maintenance
or should evolve for changes. The problem with manual UI
creation becomes worse when the code fragments have been
generated using a model-driven tool because manually added
code makes the maintenance within MDA, which aims that
any future changes in design also propagate to all generated
fragments, difficult. Therefore, there is a need to integrate the
required UI code fragment information within design models.
Many UML tools that are currently available, however, do not
support one to include properties necessary for the UI code
fragment generation in the underlying design models.

For example, consider a UML design model shown in Fig. 2.
We want to build a view form for a Java EE web application
from it and each input should be validated when it is collected
through the form. An example view form like one given in
Fig. 2 can be generated for Person class using the information
currently given in Fig. 1. However, such a form has the limited
capability in detecting the meaning of fields and in validating
user inputs because the given design model does not provide
any form generation rules with validation details other than
field types. Other problems in the current form generation can
be summarized as follows. We might want to have some fields
in a different order, e.g., the current date should be given
before a person’s birth date. An input to the email address
field can be invalid, http link can be malformed, or there can
be a negative value given to the salary filed. In addition, the
current form includes the field like id that should be assigned
by the system not by the user. Consequently this is not a
view form that was expected. Therefore, we often generate
an initial code for the form first and then add additional
constraints and validation rules to each field in the form and
reorder the fields. Fig. 3 shows a form that can be generated

Fig. 1. A UML class model example

Fig. 2. A view form generated from a conventional design model (with
validation)



Fig. 3. A view form that we want to create (with validation)

by this additional modification. One of main problems in this
kind of form generation process is that changes on the design
model cannot be automatically applied to the form that was
originally generated. Therefore, one needs to modify all related
view forms and their underlying entities including database. To
avoid this error-prone and tedious work, we propose a way to
add the form generation details with validation rules to the
design models so that they can be used to auto-generate the
view forms with proper user input validation (UIV).

UIV is critical to application security and is required in
every application interacting with users. Validation should
happen at the server-side but for usability purposes is often
needed at the client-side as well. Various validation libraries
are available such as Hibernate Validator (HBV) [22]. This
validator expects application to use Object Relational Mapping
(ORM) and extends its capabilities. The use of ORM is a
common practice in software development nowadays. Many
ORM libraries like Open JPA [25], TopLink [26] or Hibernate
[27] are available for its popularity. These ORM frameworks
follow the Java Persistence API (JPA) standard [21]. ORM
entities, although in lower layers, also determine the content
of view forms where also UIV comes in place. Unfortunately
there exists a gap between forms and entities where the data
and validation rules are defined twice. One promising approach
to reduce the gap brings form auto-generation [9] that requires
to apply addition extension at the JPA entities .

In this paper we show an approach to bridging gaps be-
tween the ORM, UIV and form generation. We promote the
code development trends to the model-driven development
by defining UML profiles for ORM [20], UIV and form
generation. These profiles implement model extensions and
can be applied to standard UML design tools. Our goal is
to generate user interface fragments1 and automated UIV
directly from design models using UML profiles and common
development libraries2. A tool capable of rich form3 generation
is provided with a widget library for Java Server Faces (JSF).
We believe to motivate code developers to use model-driven
development receiving all its benefits of code generation [3].

Our paper is organized as follows: in Section II we look
into the background and introduce model driven architecture.

1We focus on rich view forms in this work since they reflect the data model.
A form example is shown later in Fig. 2 and Fig. 3.

2Such as JPA, HBV or FormBuilder (FB) [9]
3A form that integrates UIV

In Section III we provide a motivation of our approach
introducing a tool we built for form generation. Section IV
introduces UML profiles for class model extension to capture
additional information and puts together the form generation
tool with defined UML profiles. It is followed by a case study
Section V that should enlighten the profile usage. The paper
provides a broad discussion of related work in Section VI and
conclusion.

II. BACKGROUND

Software development is complicated process influenced
by internal policy, experiences, expectations or requirements
on the software [10], [11]. Many software projects have
a lot in common which was a motivation for creation of
design Simplification with unification brought the Unified
Modeling Language (UML) [5] which is popular and widely
used language, that is taught in most universities around the
world and every software engineer knows at least its subset.
Language UML is under international, non-profit computer
industry consortium Object Management Group (OMG) [5].
This group provides enterprise integration standards for a
many various broadly used technologies. OMG’s modeling
standards include not only UML but also new development
direction called Model Driven Architecture (MDA) [6].

In the past, a software development team used a middleware
that was matching their project requirements. A problem with
such a development direction is with product compatibility
with various operating systems, with later compatibility with
another middleware or just with customer’s later requirements.
MDA provides a solution by middleware independence that is
achieved by the strength of UML which provides models that
are platform independent and platform specific.

Models in MDA are syntactically and semantically de-
scribed by meta-models, other-words meta-model is an in-
strument for model language definition. Similar to syntactic
and semantic analyzer, meta-modeling describes every element
of a model language that can be used by the language. An
example for UML class diagram is that we use elements like
classes, attributes and associations. UML meta-model then
defines all the properties and characteristics for every model
language element. Since a meta-model is also a model that
needs to be described, it has it’s meta-model that describes its
semantics. Language of meta-model is called meta-language.
Meta-language is different from a modeling language because
it is used to describe modeling languages.

We mentioned that UML models are not capable to capture
all information we need. There are constructions to use to
make the models suitable for capturing all details we need, ei-
ther we can use Constraints package in UML infrastructure or
define UML profiles [5], [13]. Profile package contains mech-
anisms that allow extending meta-classes from existing meta-
models. Profiles were defined for extending UML standard.
UML profile is a package that has stereotypes as a specific
meta-classes and tagged values meta-attributes. Stereotypes
in UML reflect code annotations, and tagged values reflect
annotation attributes. A majority of programming languages



has some form of annotations for additional information or
constraints that apply in given contexts. Annotations were
defined as a way from a large amount of XML configurations.
Annotations in UML can be represented also as a normal mod-
eling elements [14] that provide more modeling possibilities
than stereotypes.

III. MOTIVATION

Modern trends of application development go the direction
from data model over the behavioral model to the user
interface. First the database schema is defined, then a class
model is built where we deal with ORM issues. The JPA
is a standard that helps us with this mapping. It is a work
of community process involving experts from various parts
of industry dealing with ORM frameworks for Java platform.
JPA annotations are relevant to the ORM and to persistence.
Annotations are used for entities, their attributes, associations,
inheritance, etc. Promotion of JPA to the model-driven ap-
proach was the goal of [20]. Once the mapping is finished the
behavior comes in place. Many frameworks define controllers,
managers or beans that deal with behavior. The presentation
is the last step in the development process. It also means that
presentation is dependent on the underlying code. If we focus
on user interaction with a software application, we see that
user invokes actions, and submits data. Data submission goes
through forms and the input data must go through a validation.
Validation is a standard process that must happen before the
data persistence. One of the most popular frameworks for
ORM - Hibernate provides a validation library HBV that
takes care of data validation by annotating the data field. The
similarity of annotations in JPA and HBV raises a question if
we could integrate these somehow for view form generation
and make view forms derive the information from entity
attributes and its annotation constrains. We could, and it can
make our forms more capable, because attributes will know
what data inputs to expect. View forms, however, have more
restrictions than what is already defined by JPA and HBV. For
example we use a string field once as short input text, another
time as text area, somewhere as password, html, or http link.
We also need to derive proper order for the form elements.

Our previous work [9] focused on validating data and
generating view forms from JPA entity using the HBV. We
explored dependencies between entity and view form fields.
An entity field partially determines the type of an input
element used in a form. A proper view form input element
is chosen based on the field type and its additional properties
captured by annotations. These annotations are also used for
field validation, for constraints and static business rules. A tool
FormBuilder (FB) we provide is capable of generation of rich
view forms that integrate all constrains defined in JPA entity.
Currently the tool is used by a large enterprise application in
production where every change to an entity is immediately
reflected in the view form without programmer interaction.

Based on our experience with the tool we extend the idea
to the design model. A design model using MD-JPA profile
with MD-HBV profile and MD-FB profile can generate entity

beans with validation and view annotations that can be applied
to view form generation (and regeneration). Similar idea is also
implemented in Naked Objects [19]. Considering distributed
application frameworks like JSF, PHP, ASP etc. that contain
very similar data forms, we believe this can propagate on other
platforms. All the cross platform developers can benefit from
transparency of view rich forms.

IV. PROFILES

To flex class models and make them capable of gathering
ORM, validation and view form specification information we
use UML profiles. We build them incrementally so a developer
can apply a subset. A popular MDA-based modeling tool
Sparx System’s Enterprise Architect [23] is used to define and
apply these UML profiles.

A. ORM Profile

Implementation of ORM that uses JPA involves mostly
annotations of classes, attributes and associations that are
implemented as attributes. In the UML we use stereotypes and
tagged values that extend UML meta-classes. Stereotypes can
represent all the JPA annotations. Fig. 44 shows a subset of
UML profile for JPA relevant to our goal. For full reference
see [20]. Table I provides connection between annotations,
stereotypes and their meanings.

Having these stereotypes in the model we know more
about the meaning of each attribute. Also entity stereotype
is important, because it reflects the entity name and enables
the JPA persistent services. Column stereotype provides re-
strictions that specify how can be a given attribute used. This
will significantly influence the upper layers of an application.
Most of the attributes of a given entity are persistent but
some of them may be transient. Sometimes we want to
logically separate class in more peaces and for that reason
we use embedded which physically embeds another class in
the context class. Stereotypes for internal entity management

4Note that a full triangle arrow head should be used for stereotype meta-
class extension according to the UML specification, but we use a stick arrow
head instead because it is not supported by the Enterprise Architect.

Fig. 4. UML profile for JPA - MD-JPA



TABLE I
MD-JPA STEREOTYPES DETAILS

Annotation Stereotype Description Applicability
@Version Version Optimistic locking Integer, Date
@Embedded Embedded Intrinsic part of owning

entity
T extends
Class

@Transient Transient Not persistent *
@Id Id Primary key *
@Lob Lob Binary data Byte
@Enumerated Enumerated Persist ordinal or Strings Enum
@OrderBy OrderBy Associated collection sort Collection
@Temporal Temporal Database type Date,

Time, TimeStamp
Date

@Column Column Matching table column *
@Entity Entity Enable JPA for POJO Class

are id that reflects the primary key and version that is used for
optimistic locking. These internal management attributes are
hidden to the application user. Associations are in JPA actual
attributes that have specified mapping (one/many to one/many)
when we need to order a collection of related classes we do
so by annotating the collection by orderby. Enumerations are
special type of data and we can map them by their ordinal
or string value. To denote we use a binary data we use lob
annotation. Specification of a date format is made by a tagged
value of temporal stereotype.

If we look at these stereotypes from another perspective then
besides ORM, they also provide meaning for each attribute.
Some specify that attributes are internal (version, id), some
indicate how to use them (column, transient) and some denote
the specialization of an attribute (lob, temporal, enumerated).
Could we use this information also for determination of how
to design the human-computer communication? This could tell
us that some attributes are not relevant to a user (id, version),
some of them can be only displayed, but not modified (tran-
sient, insertable, updatable) and some are actually required
in some special form (nullable, unique, length). This ORM
information allows us to validate what user sends to the system
before we try to persist. Considering usability practices this
also influences the UI that prevents the user from actions that
system denies. Our thinking must be correct because enterprise
ORM framework Hibernate goes a similar direction with HBV
that extends the JPA annotations for input validations.

B. Validation Profile

HBV is based on defined metadata model for JavaBean
validation (JSR 303). Its usage is not much different from
the previous JPA. Annotations are used for entity attributes
to specify additional constraints. We implement the MD-HBV
profile that allows us to specify these constrains in design
model. Fig. 5 provides the pallet of available stereotypes.
All of these apply on attributes. Table II provides connection
between annotations, stereotypes, meanings and applicability.

Validation stereotypes interfere a little bit with the JPA
stereotypes and tagged values (NotNull vs. nullable tagged
value in JPA, Length vs. length tagged value in JPA), this
is a result of new specification that is delayed in JPA 2.
Validation annotations give us very precise constrains on

applied attributes. These determine a lot of meaning of each
attribute. We use length to specify string length. For numbers
we can set range they are expected to be in when we can
set just a min or max value. For collections and arrays we
may set expected size. For string properties we may expect
email, credit card number or 13-digit EAN codes (or UPC-
A), we may also need to set a specific pattern. Some money
attributes will need a validation for digit amount. Dates may
need to be set for future or past (for DOB). All fields might
be checked for being not null or not empty.

Having specified JPA entity using JPA and HBV annotations
we look at a system user. He sends data through view forms.
If the forms are plain and validation fails, user must re-submit
his data. From the usability perspective we rather design view

Fig. 5. UML profile for Hibernate Validator - MD-HBV

TABLE II
MD-HBV STEREOTYPES DETAILS

Annotation Stereotype Description Applicability
@Min Min Value higher or equal to min Num/String
@Max Max Value less or equal to max Num/String
@Length Length Value length in the range String
@Range Range Value between min and max Num/String
@Size Size Value size is between min

and max
Collection,
Map, Array

@Pattern Pattern Value matches the reg-exp String
@Patterns Patterns Value matches the reg-exps String
@Digits Digits Number with up to specified

integer, fractional digits
Numeric,
String

@CreditCard-
Number

CreditCard-
Number

Match credit card number String

@Email Email Match email String
@EAN EAN EAN (13) or UPC-A code String
@Future Future Future date Date
@Past Past Past date Date
@NotNull NotNull Not null attribute value *
@NotEmpty NotEmpty Not empty attribute value *
@AssertFalse AssertFalse Operation must return true Boolean op.
@AssertTrue AssertTrue Operation must return false Boolean op.



Fig. 6. UML profile for FormBuilder - MD-FB

TABLE III
MD-FB STEREOTYPES DETAILS

Annotation Stereotype Description Applicability
@FormOrder FormOrder Order in view form *
@InputLength InputLength Input widget length *
@JSPattern JSPattern Java Script regular expr String
@Password Password Password expected String
@Link Link Link expected String
@TextArea TextArea Long text expected String
@Color Color Color expected Integer
@Html Html Html expected String
@Ignore Ignore Do not generate field *
@TableColumn TableColumn Will be used for table *
@CompareTo CompareTo Must satisfy comparison *
@Type Type Type of widget to use T extend Class

forms based on entity attribute constraints. Stereotypes that
hold the constraints determine what data can be persisted
and which are wrong. To direct our user, and prevent him
from wrong data submissions, we must reflect all the attribute
stereotypes in the forms. Doing so manually is tedious replica-
tion, so automation is the correct direction. But our plans halt
when we want to generate forms with defined order (reflective
API does not warrant attribute order), or when we want use a
string attribute to set a password, use it as http link or render
it as HTML. What if some integer value has a meaning of a
color, etc.? We could generate a form and modify it manually,
but if a change to the JPA entity comes we must to start over.
What is necessary to auto-generate forms that will have all we
need? We explore these in the following subsection.

C. Form Builder Profile

We explored and discussed common practices for ORM and
input validation that are not sufficient for rich form generation.
In this section we identify the missing elements for view form
auto-generation and future re-generation. The MD-FB profile
provides a way to capture all necessary information in design
model. Fig. 6 provides the variety of MD-FB stereotypes.
Table III provides connection between annotations, stereotypes
and its meaning with applicability.

The first thing that is missing in the previous profiles is form
order, i.e., Java Reflective API does not warrant class field

order. This way we can set the form order we expect. Input
fields are capable of restriction on data size but there is also
the visual size of the element (input length). Some attributes
in the entity might be ignored for the generation because
they are responsible for internal logic. String attributes may
be distinguished for passwords, text areas, html, http links or
default. Sometimes we interfere Java regular expressions with
JavaScript ones but sometimes not (JSPattern). Some complex
attribute types will need a component that allows selection,
just imagine select menu for country, option box for gender
or suggestion box for person, for all of these we set type to
a string key that will be mapped to a particular view widget.
Rarely we want to set a color. We also extend the validation to
attribute comparison satisfaction. This will be useful for flight
booking where we set two dates one for departure and one for
return, the departure date must be before the return one. Some
attributes might be used for table generation (table column).

D. Constraints for Model Verification

The defined profiles bring the advantage to verify validity
of the design model. In order to verify models we specify a
set of constraints using Object Constraint Language (OCL)
[5]. OCL language defines invariants for stereotypes, which
must be true for all elements. These invariants can be verified
in integrated development environment that supports OCL
interpreter. Many OCL constraints for MD-JPA have been
defined in [20]. For structural description, we also consider
[7], [8]. Most of stereotypes are applicable to specific attribute
types. We verify these by applying constrains inside each
stereotype. For instance for the MD-FB Password stereotype
we specify OCL in Listing 1. Similarly we apply these for
many other stereotypes and particular types. For MD-HBV
we also specify constraints for Length, maximal and minimal
Range, Size, etc. Specifically for Asserts we need to check the
return values. For evaluation that CompareTo property exists
we can use the metamodel. For code implementations it is
possible to have not synchronized JPA and HBV annotations
like Length and column attribute length or NotNull and column
nullable. In here we can force that they are in sync.

context Password: inv self.type.name = ’String’
context Length: inv self.max >= self.min
and self.min >= 0 and self.type.name = ’String’

context Size: inv self.max >= self.min and self.min >= 0
and self.type.oclIsKindOf(CollectionType)

context AssertTrue: inv
self.getReturnParameter().type.name = ’Boolean’

context CompareTo: inv self.type = self.property.type
and self.Class.attributes.exists(self.property)

Listing 1. OCL contraints

E. Proposed and Implemented UML Profiles

We have proposed UML profiles for conventions libraries
for ORM, validation and view form generation. These profiles
are implemented and tested by Enterprise Architect tool where
we can import these profiles. At this point the profiles are
incrementally dependent, although we can apply only MD-
JPA, or add MD-HBV and on the top we could add MD-FB.



Fig. 7. UML profiles ORM, Validation and FormBuilder summary

Fig. 8. Example of rich design model

We believe that these profiles will fill the gap between code
programmers and model-driven development. Programmer can
build models that fully reflect what he could write manually,
the advantage is the level of abstraction and its independence.
For instance Hibernate exists also on .NET so this community
can gain from our profiles as well. The principle is platform
independent and not limited to web applications. Summary of
the implemented profiles is shown in Fig. 7.

F. Profiles and FormBuilder

We could use only ORM profile for its purposes, but most
probably we will need to do validation and build view forms.
We already mentioned the disadvantages of manual approach.
Here we look at automation with no complicated learning
curve. Using the defined profiles we completely describe
system’s static structure and from the class model generate JPA
entities with additional annotations. The tool we provide takes
the generated entities as an input. It also allows developer to
set component fragments that are decorated with the actual

entity attributes and their constraints. We provide this tool
with a complete view widget library for JSF applications using
components from RichFaces, ICEfaces or JSF. Developer can
decide which library to use, modify the widgets or define his
own. The tool has a mapping of entity attributes to each widget
so the developer can modify the mapping. By default he adds
the tool with default configuration to his project and calls the
generation on all entities. This generates him rich view forms
reflecting JPA entity beans and their constraints. Every-time
a change to an entity comes, the forms are re-generated. The
widget library also implements client-side validation which
provides a fast validation to user data.

V. CASE STUDY

At the beginning of this paper was provided a motivation
example showing what rich form we want to generate. With the
UML profiles, provided for design models, we can generate the
code fragments without any manual intervention. The example
is focused on form generation. Our design model from Fig. 1
is changed to a model using annotations in Fig. 8. We start
to build on the same model and stereotype the model using
MD-JPA for ORM, this enable us to generate code that will
use a JPA implementation framework (Hibernate, OpenJPA or
TopLink). On the top we add MD-HBV for validation, this
allows to generate code that will use HBV library. As next
we add profile for MD-FB and add stereotypes for the view
form generation. The generated code captures all necessary
details. Once we are done with entity code generation, the
FormBuilder comes in place. We add it view widgets library
and point FormBuilder at chosen entities.

Fig. 8 shows the design model with applied profiles. The
Person class is equivalent to the one from Fig. 1 The Person
entity code snippet is in Listing 2.

@Entity
@Table(name = "Person", catalog = "FormBuilder")
public class Person implements java.io.Serializable {
...
private String name;
private Date born;
...
@Column(name = "name", nullable = false, length = 100)
@NotEmpty
@Length(max = 100)
@FormOrder(1)
public String getName() {return this.name;}
public void setName(String name) {this.name = name;}

@Column(name = "born", nullable = false)
@Temporal(TemporalType.DATE)
@NotEmpty
@Past
@FormOrder(5)
public String getBorn() {return this.born;}
...

Listing 2. Person entity fragment

Using JPA we generate SQL scheme, we can also use
business layer generators like Seam-gen [18]. The next step
is to generate view like forms, tables, navigation and security.
View generation process is well described from the behavioral
perspective for the J2EE platform by [4], [17] or could also



Fig. 9. Generated car view form

be made by [18]. The improvement comes for view forms.
FormBuilder refers to the entity and for each field is selected
a view widget based on field type and annotations that are
also used as parameters for the widget. FormBuilder adds full
control over widgets their modification. A view code snippet
for Person is in Listing 3. All the underlined texts are supplied
by FormBuilder based on the field information. The design
model in Fig. 8 captures all information to generate the form
in Fig. 3. The Car form in Fig. 9 is shown for completeness.
<h:form id="formPerson">
<util:inputText label="Name"

edit="#{edit}"
value="#{bean.name}"

required="true"
size="30"

minlength="0"
maxlength="100"

title="#{text[t.person.name]}"
rendered="#{empty nameRender

? ’true’ : nameRender}"
id="#{prefix}name"/>

.. <!-- other elements 2, 3, 4 -->
<util:inputDate label="Born"

edit="#{edit}"
value="#{bean.born}"

required="true"
title="#{text[t.person.born]}"

rendered="#{empty bornRender
? ’true’ : bornRender}"

id="#{prefix}born"/>
.. <!-- other elements 5, 6 -->
</h:form>

Listing 3. Person view form code

The advantages of the auto-generation were mentioned
many times. Human designer will appreciate it the most once
a change request for the entity structure or field signatures
comes. The only thing to do will be to modify the model and
auto-generate the rest of code. No type errors can happen so
the code will work perfect on the first run.

Using the UML profiles on design model for Humam
Compter Interaction (HCI) we have two options. When user
has an intention to modify some data, we can auto-generate a
rich form specific to his request in run-time. So the form gener-
ation happens on demand. This will with no doubt simplify the
whole process, but on the other hand decrease its performance.
We can pre-generate rich forms for all application users (as
done in the example) and fetch them statically instead. Static
fetch improves the performance.

Another advantage comes when the targeted application
communicates over HTTP, WML or with standalone clients.

The idea of having a rich model that renders a view in run-
time based on the client capabilities also adds benefits. We can
also extend the previous using role-based access control. Some
user roles can see more information and some less, generating
the view can also consider visibility constraints when forms
are requested. This idea could be elaborated in similar manner,
but it is over the scope of this paper. In this study we dealt
with aspects for ORM, validation and view form generation.
A modeling tool that has a profile view for each particular
aspect would be very useful. Similar feature for dealing with
crosscutting concerns would help in integrated development
environment (IDE) for code development.

VI. RELATED WORK

Many publications related to user interface generation exist
[2], [24]. The idea for user interface generation using an MDA
approach [1], [3], [4] is not new, neither.

We first look at survey of Model Driven Engineering MDE
tools for HCI [1]. MDE developer will benefit from our
profiles by capturing more information for each class attribute.
This clarifies the meaning of a particular attribute and enbables
to generate a better application. Such an improvement helps
to avoid unsuccessful form submissions when user provides
wrong data. Based on the fine-grained information we can
provide user with more usable solutions and better guidance
what data we expect. Authors believe in the need for MDE
tools for user interface design. We propose and implement
profiles that can be applied to existing UML tools so that one
can capture more view form specific information.

Authors of [2] mention that despite a lot of research, model-
based UI tools have not become common, in part because
building models is an abstract process and better results are
often achievable by a human designer in less time. We have
illustrated significant improvements to this. Using our profiles
we can generate view forms with UIV. We provide a tool for
J2EE that is successfully used in a large enterprise application
for almost two years to simplify its maintenance. This open-
source tool experienced more than 700 downloads.

Investigation of the use of MDA for developing HCIs is the
goal of [3]. Authors discuss the gap between HCI and System
Engineering and mention that one may argue that relating de-
sign models to the user interface can be considered as a mix of
presentation and persistence logic. Authors, however, point out
that HCI concerns cannot easily be described independently
from other concerns for a system. Our paper builds on this.

The importance of UI auto-generation from PIM to UI code
in MDA is mentioned in [4]. Behavioral diagrams are used for
transformations in this paper. Our idea extends the richness of
the generated application, from the data input perspective. We
have explored some ideas from the paper in more details.

Using MD-JPA[20] for ORM mapping is a correct way
to fill the gap between model-driven approach and manual
development. Our research goes beyond the UML profile use
for ORM, provides profiles for validation and form generation
and brings the connection of these aspects.



Most of the related work focuses on complete application
generation rather than code fragments that can be optimized
for a practical use. For a system developer, such a full MDA
tool generation could be very complex and the result he gets
might be different from what he expects. In this paper we
focused rather at improvements of fragments from the whole
process which we believe can help practically in projects.
We provide UML profiles that extend existing UML diagrams
rather than inventing new diagrams as used in [24]

Our previous work [9] provides the insight from the lower
level perspective. We looked in details on entities, view widget
library, mapping and form generaration introducing our tool.

Many tools were introduced for the form generation. Some
tools reflect its XML configuration for a form building. IBM
XML Forms Generator [15] is a tool, in the form of eclipse
plug-in, that can generate XForms [16] from given XML data
instance. It can generate form elements that satisfy type and
length constraints and control types according given XML
scheme. Unfortunately XForm technology is not the only
technology used for web forms. Our idea with MD-FB profile
and FormBuilder goes well with this work. FormBuilder allow
to build own library of widgets, these can be in form of XML
for XForms.

VII. CONCLUSION

In this paper we proposed and implemented UML extension
for design models in the form of UML profile which is a set
of stereotypes and tag values. We discussed the connection be-
tween ORM, validation and form generation that all are driven
by design model. We believe that this extension brings a way
to fill a gap between MDA and manual code development. We
have also shown that using few more stereotypes over ORM
allows us to generate view forms that fully reflect constrains
placed on the persistent entities. Our work is influenced by
distributed web applications but the idea is general and is
useful for standalone applications as well.

A common practice in application development is to define
an entity model and from there manually code the view
forms. This is tedious, error-prone an mostly not necessary
if few more information are captured in the lower layer.
The problem with manual development mostly comes with
application maintenance when entity level is in scope of a
backend developer and view level in scope of a frontend
developer. Our approach actually eliminates the need of the
frontend developer in the maintenance cycle for this task.
Having the constraints set up also eliminates the need to
manually enforce these in the business layer. This task can
be simply automated using the proposed platform. We use
this approach successfully for almost two years in a large
enterprise application and it is one motivation that made
us want to share this idea, which we believe simplifies the
application development and maintenance.

This paper extends the idea from our previous work Form-
Builder [9] that proposed and introduced a tool for view form
generation directly from JPA entity beans. Here we have pro-
moted the concept as a UML profile. With our extension, UML

models can be capable of holding the additional information
for complete data validation and rich view form generation.
We provide a tool that defines new constrains for JPA entity
beans. Using the existing model information and a few new
constraints, the tool provides a configurable translation from
entities to view forms.

REFERENCES

[1] A Survey of Model Driven Engineering Tools for User Interface Design,
Jorge-Luis Perez-Medina, Sophie Dupuy-Chessa, and Agnes Front ,
Laboratory of Informatics of Grenoble , TAMODIA 2007, LNCS 4849,
pp. 84-97, 2007. Springer-Verlag Berlin Heidelberg 2007

[2] Automatic Interface Generation and Future User Interface Tools, Jef-
frey Nichols, Andrew Faulring, Human-Computer Interaction Institute,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 USA

[3] Investigating User Interface Engineering in the Model Driven Architec-
ture, Jacob W Jespersen, Jesper Linvald, IT-University of Copenhagen,
Glentevej 67, 2400 NV, Denmark

[4] An Extended MDA Method for User Interface Modeling and Transfor-
mation, Wu J-H, Shin S-S, Chien J-L, Chao WS, Hsieh M-C, Fifteenth
European Conference on Information Systems, 2007

[5] OMG, Unifiend Modeling Language (UML) Version 2.1.2, Meta Object
Facility (MOF), Model Driven Architecture (MDA), Object Constraint
Language (OCL) Version 2.0, http://www.omg.org

[6] MDA Explained, Anneke Kleppe, Jos Warmer and Wim Bast, Addison-
Wesley, Boston, February 2007

[7] The Object Constraint Language Second Edition,Jos Warmer and Anneke
Kleppe, Addison-Wesley, Boston, August 2003

[8] On the Evolution of OCL for Capturing Structural Constraints in Mod-
elling Languages, Dimitrios S. Kolovos, Richard F. Paige, Fiona A. C.
Polack, Department of Computer Science, University of York, UK

[9] FormBuilder, Tomas Cerny, Michael J. Donahoo, Eunjee Song, CLI ICPC
2008, Banff, http://sourceforge.net/projects/form-builder/

[10] Requirements Engineering: A Roadmap Bashar Nuseibeh, Steve Easter-
brook, ACM 2000, Future of Software Engineering Limerick Ireland

[11] Four Dark Corners of Requirements Engineering, Pamela Zave, Michael
Jackson, ACM Transactions on Software Engineering and Methodology,
Vol. 6, No. 1, January 1997, Pages 1-30.

[12] Industrial Experiences with Design Patterns, Kent Beck, Ron Crocker,
Gerard Meszaros, James O. Coplien, Lutz Dominick, Frances Paulisch,
John Vlissides, Proceedings of ICSE-18, IEEE, 1996

[13] An Overview Of Model-Driven Web Engineering and the Mda, Nathalie
Moreno, Jose Romero, Antonio Vallecillo, Web Engineering: Modelling
and Implementing Web Applications, ch.12, Springer, London, 2008

[14] Representing Explicit Attributes in UML, Vasian Cepa, Sven Kloppen-
burg 7th Int’l Workshop on Aspect-Oriented Modeling, Jamaica, 2005

[15] IBM XML Forms Generator, Kevin E. Kelly, Jan Joseph Kratky, Steve
Speicher, Keith Wells, Gee Chia, www.alphaworks.ibm.com/tech/xfg

[16] Xforms, standard W3C, http://www.w3.org/MarkUp/Forms/
[17] EDOC to EJB transformations within MDA, Dariusz Gall, Michal

Molenda, Blekigge Institute of Technology, Sweden
[18] JBoss Seam, www.jboss.com/products/seam
[19] Naked-objects, development platform www.nakedobjects.org
[20] Towards a UML profile for model-driven object-relational mapping,

Alexandre Torres, Renata Galante and Marcelo S. Pimenta, Instituto de
Informatica Universidade Federal do Rio Grande do Sul, Brazil, 2009
XXIII Brazilian Symposium on Software Engineering

[21] JSR 220: Enterprise JavaBeansTM. Version 3.0. Java
Persistence API, Linda DeMichiel and Michael Keith, 2006.
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

[22] Hibernate Validator, open source validation library for Hibernate
framwework https://www.hibernate.org/412.html

[23] Enterprise Architect, UML design tool, www.sparxsystems.com.au
[24] An extension of UML for the modeling of WIMP user interfaces,

Jesus M. Almendros-Jimenez, Luis Iribarne, Information Systems Group,
University of Almeria Spain, Journal of Visual Languages and Computing
19 (2008) 695-720, 13 December 2007

[25] Apache OpenJPA, openjpa.apache.org
[26] Oracle TopLink, www.oracle.com/technology/products/ias/toplink/jpa/
[27] JBoss Hibernate, www.hibernate.org


