Image filtering \& noise suppression

Jan Kybic
http://cmp.felk.cvut.cz/~kybic
kybic@fel.cvut.cz

September 2011
with contributions and slides from Václav Hlaváč, Tomáš Svoboda, Alan Peters

Introduction

Noise

Spatial filtering
Frequency domain filtering
Non-linear filtering
Filtering applications
Denoising by linear filtering
Wavelets

Filtering

Image processing operation

- Uses information from more than one pixel
- Spatially invariant (only local information)
- Does not change geometry (position of objects)

Motivation \& Examples

- Noise suppression
- Blurring, sharpening
- Illumination inhomogeneity suppression, local contrast improvement
- Object detection

Noise

Sources:

- Photon noise
- Sensor noise
- Film grain
- Thermal noise in electronics
- Transmission noise
- Quantization noise

Noise reduction:

- Bigger sensors
- Cooled sensors and electronics
- Long exposures, repeated acquisitions
- Image processing

Noise properties

- Additive $f_{n}(\mathbf{x})=f(\mathbf{x})+u(\mathbf{x})$, multiplicative $f_{n}(\mathbf{x})=f(\mathbf{x}) u(\mathbf{x})$
- Gaussian, uniform, salt\&pepper (histogram, formulas $p_{u}(u)$)

$$
p_{u}(u)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{\left(u-\mu_{u}\right)^{2}}{2 \sigma^{2}}}
$$

- Identically distributed \times spatially variant

$$
p_{u}(u \mid \mathbf{x}) \stackrel{?}{=} p_{u}(u)
$$

- Independent $(\Rightarrow$ uncorrelated $) \times$ correlated

$$
\operatorname{cov}(u(\mathbf{x}), u(\mathbf{y}))=\mathrm{E}\left[\left(u(\mathbf{x})-\mu_{u}(\mathbf{x})\right)\left(u(\mathbf{y})-\mu_{u}(\mathbf{y})\right)\right] \stackrel{?}{=} c \delta(\mathbf{x}-\mathbf{y})
$$

- zero mean, $\mu_{u}=\bar{u}=\mathrm{E}[u]=0$
- independent identically distributed (i.i.d.) normal noise

Uncorrelated noise examples

Uncorrelated noise examples

Uncorrelated noise examples

Multiple image averaging

Acquire N images of the same scene. Assume i.i.d. additive zero-mean Gaussian noise with variance σ^{2}.

$$
f_{i}(\mathbf{x})=f(\mathbf{x})+u(\mathbf{x})
$$

- each $f_{i}(\mathbf{x})$ has $\mathrm{E}\left[f_{i}(\mathbf{x})\right]=f(\mathbf{x})$ and $\operatorname{var}\left[f_{i}\left(\mathbf{x}_{i}\right)\right]=\sigma^{2}$
- Calculate average value $\bar{f}(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N} f_{i}(\mathbf{x})$
- \bar{f} is an unbiased estimator of f

$$
\mathrm{E}[\bar{f}(\mathbf{x})]=\frac{1}{N} \sum_{i=1}^{N} \mathrm{E}\left[f_{i}(\mathbf{x})\right]=\frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x})=f(\mathbf{x})
$$

Multiple image averaging

Acquire N images of the same scene. Assume i.i.d. additive zero-mean Gaussian noise with variance σ^{2}.

$$
f_{i}(\mathbf{x})=f(\mathbf{x})+u(\mathbf{x})
$$

- each $f_{i}(\mathbf{x})$ has $\mathrm{E}\left[f_{i}(\mathbf{x})\right]=f(\mathbf{x})$ and $\operatorname{var}\left[f_{i}\left(\mathbf{x}_{i}\right)\right]=\sigma^{2}$
- Calculate average value $\bar{f}(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N} f_{i}(\mathbf{x})$
- Variance is decreased N times, standard deviation \sqrt{N} times

$$
\begin{aligned}
\operatorname{var}[\bar{f}(\mathbf{x})] & =\frac{1}{N^{2}} \operatorname{var}\left[\sum_{i=1}^{N} f_{i}(\mathbf{x})\right]=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{var}\left[f_{i}(\mathbf{x})\right] \\
& =\frac{1}{N^{2}} \sum_{i=1}^{N} \sigma^{2}=\frac{\sigma^{2}}{N}
\end{aligned}
$$

$\rightarrow \operatorname{stdev}[\bar{f}(\mathbf{x})]=\operatorname{stdev}[u] / \sqrt{N}=\sigma / \sqrt{N}$

Multiple image averaging Example

noisy

Multiple image averaging
Example

Multiple image averaging Example

Multiple image averaging Example

Beyond multiple image averaging

- Mostly only a single image available
- We can use spatial redundancy (neighborhood pixels are similar)
- Local processing
- Distinguish between noise and image features (e.g. edges)

Introduction

Noise

Spatial filtering

Frequency domain filtering
Non-linear filtering
Filtering applications
Denoising by linear filtering
Wavelets

Local filtering

- Replace a value of the image function (pixel) by a new one computed from the immediate neighbourhood.
- Linear \times nonlinear

- Shift-invariant or not
- spatial relationships are important
- small neighborhood \rightarrow fast
- linear \rightarrow fast
- averaging suppresses Gaussian noise but causes blurring
- robust statistics can be applied

Local filtering (2)

Idea: Output is a function of a pixel value and those of its neighbours.
Example for a 3×3 region.

$$
g(x, y)=\operatorname{Op}\left(\begin{array}{ccc}
f(x-1, y-1) & f(x, y-1) & f(x+1, y-1) \\
f(x-1, y) & f(x, y) & f(x+1, y) \\
f(x-1, y+1) & f(x, y+1) & f(x+1, y+1)
\end{array}\right)
$$

Possible operations: sum, average, weighted sum, min, max, median...

Linear shift invariant filtering

- linearity $\alpha \mathcal{L}\left(f_{1}\right)+\beta \mathcal{L}\left(f_{2}\right)=\mathcal{L}\left(\alpha f_{1}+\beta f_{2}\right)$
- shift-invariance $(\mathcal{L}(f))(\mathbf{x}+\mathbf{t})=\mathcal{L}(f(\mathbf{x}+\mathbf{t}))$
- \Leftrightarrow can be expressed as a convolution with kernel h

$$
\begin{aligned}
g & =\mathcal{L}(f)=f * h \\
g(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-k, y-I) h(k, l) \mathrm{d} k \mathrm{~d} l \\
g(x, y) & =\sum_{k=-\infty}^{\infty} \sum_{I=-\infty}^{\infty} f(x-k, y-I) h(k, I)
\end{aligned}
$$

- simplest, fastest, models well the acquisition process and its inverse, optimum denoising in the Gaussian case

Spatial filtering by masks

- Very common neighbour operation is per-element multiplication with a set of weights and sum together.
- Set of weights is often called mask or kernel.
Local neighbourhood

$f(x-1, y-1)$	$f(x, y-1)$	$f(x+1, y-1)$				
$f(x-1, y)$	$f(x, y)$	$f(x+1, y)$				
$f(x-1, y+1)$	$f(x, y+1)$	$f(x+1, y+1)$	\quad	$w(-1,-1)$	$w(0,-1)$	$w(+1,-1)$
:---	:---	:---				
$w(-1,0)$	$w(0,0)$	$w(+1,0)$				
$w(-1,+1)$	$w(0,+1)$	$w(+1,+1)$				

$$
g(x, y)=\sum_{k=-1}^{1} \sum_{l=-1}^{1} w(k, I) f(x+k, y+I)
$$

2D convolution

- Spatial filtering is often referred to as convolution.
- We say, we convolve the image by a kernel or mask.
- Though, it is not the same. Convolution uses a flipped kernel.

Local neighbourhood
mask

$f(x-1, y-1)$	$f(x, y-1)$	$f(x+1, y-1)$
$f(x-1, y)$	$f(x, y)$	$f(x+1, y)$
$f(x-1, y+1)$	$f(x, y+1)$	$f(x+1, y+1)$

$\mathrm{w}(+1,+1)$	$\mathrm{w}(0,+1)$	$\mathrm{w}(-1,+1)$
$\mathrm{w}(+1,0)$	$\mathrm{w}(0,0)$	$\mathrm{w}(-1,0)$
$\mathrm{w}(+1,-1)$	$\mathrm{w}(0,-1)$	$\mathrm{w}(-1,-1)$

$$
g(x, y)=\sum_{k=-1}^{1} \sum_{l=-1}^{1} w(k, l) f(x-k, y-l)
$$

Smoothing

Output value is computed as an average of the input value and its neighbourhood.

- Advantage: less noise
- Disadvantage: blurring
- Any kernel with all positive weights causes smoothing or blurring
- They are called low-pass filters

Averaging (preserves constants):

$$
g(x, y)=\frac{\sum_{k} \sum_{l} w(k, l) f(x+k, y+l)}{\sum_{k} \sum_{l} w(k, l)}
$$

Smoothing kernels

Can be of any size, any shape

$$
\begin{gathered}
h=\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad h=\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right] \\
h=\frac{1}{25}\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

Averaging ones $(n \times n)$ - increasing mask size

image 1024×768

15×15

7×7

29×29

11×11

43×43

More smoothing examples

More smoothing examples

More smoothing examples

Gaussian filter

$$
h(\mathbf{x})=(2 \pi)^{-\frac{d}{2}}|\mathbf{C}|^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \mathbf{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})^{\top}}
$$

- Separable
- Rotation invariant (for $\mathbf{C}=\mathrm{cl}$)
- Smooth in both space and frequency
- Well approximates many natural processes
- Central limit theorem justification

Implementation

- Infinite support
- Truncate $=$ FIR approximation
- IIR (moving average) approximation (Deriche)
- Binomial filter = repeated convolution with [1 . . 1]
- Fourier domain implementation

Derivative (difference) filters

$$
\begin{array}{r}
2 I(r, c)-I(r, c-1) \\
-I(r, c+1)
\end{array}
$$

$I(r, c)$

$$
\begin{array}{r}
2 I(r, c)-I(r-1, c) \\
-I(r+1, c)
\end{array}
$$

$$
4 I(r, c)-
$$

$$
I(r-1, c)-I(r+1, c)-
$$

$$
I(r, c-1)-I(r, c+1)
$$

	-1	
	2	
	-1	

	-1	
-1	4	-1
	-1	

Derivative examples

Derivative examples

horizontal differences

Derivative examples

vertical differences

Derivative examples

horizontal \& vertical differences

Derivative examples

horizontal \& vertical \& diagonal differences

Introduction

Noise

Spatial filtering

Frequency domain filtering
Non-linear filtering
Filtering applications
Denoising by linear filtering
Wavelets

Frequency domain filtering

- LTI spatial domain filtering - convolution
- Frequency domain filtering
- Forward transform (FFT)
- Filtering - multiplication
- Inverse transform (iFFT)
- Motivation - efficiency, interpretation
- Other transforms possible (wavelet, Hadamard....)

2D Fourier transform

$$
\begin{aligned}
F(u, v) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i 2 \pi(u x+v y)} d x d y \\
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{i 2 \pi(x u+y v)} d u d v
\end{aligned}
$$

- A sufficient condition for existence is absolute integrability.
- Basis functions are sin and cos thanks to $e^{j z}=\cos z+j \sin z$
- Various notations: $\hat{f}, \mathcal{F}_{u, v}(f)=F(u, v)$

Discrete Fourier transform

$$
F(\xi, \eta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-2 \pi j(x \xi+y \eta)} d x d y
$$

Problem: Images are discretized and restricted in space. . .

- Periodicity \rightarrow Fourier series, discretized frequencies $(u=0,1, \ldots)$

$$
F_{s}(u, v)=\frac{1}{N_{x} N_{y}} \int_{0}^{N_{x}} \int_{0}^{N_{y}} f(x, y) e^{-2 \pi j\left(\frac{x u}{N_{x}}+\frac{v v}{N_{y}}\right)} d x d y
$$

- Integration using P0 interpolation, ideal sampling $(h=1) \rightarrow$ DFT:

$$
F_{d}(u, v)=\frac{1}{N_{x} N_{y}} \sum_{x=0}^{N_{x}-1} \sum_{y=0}^{N_{y}-1} f(x, y) e^{-2 \pi j\left(\frac{x u}{N_{x}}+\frac{y v}{N_{y}}\right)}
$$

- Inverse transform (IDFT):

$$
f(x, y)=\sum_{u=0}^{N_{x}-1} \sum_{v=0}^{N_{y}-1} F_{d}(x, y) e^{2 \pi j\left(\frac{x u}{N_{x}}+\frac{w}{N_{y}}\right)}
$$

Discrete Fourier transform

- Integration using P0 interpolation, ideal sampling $(h=1) \rightarrow$ DFT:

$$
F_{d}(u, v)=\frac{1}{N_{x} N_{y}} \sum_{x=0}^{N_{x}-1} \sum_{y=0}^{N_{y}-1} f(x, y) e^{-2 \pi j\left(\frac{x u}{N_{x}}+\frac{v v}{N_{y}}\right)}
$$

- Inverse transform (IDFT):

$$
f(x, y)=\sum_{u=0}^{N_{x}-1} \sum_{v=0}^{N_{y}-1} F_{d}(x, y) e^{2 \pi j\left(\frac{x u}{N_{x}}+\frac{v y}{N_{y}}\right)}
$$

- Separability, $\mathcal{F}_{x} \mathcal{F}_{y}=\mathcal{F}_{x y}$
- Fast Fourier Tranform (FFT) with complexity $O\left(N_{x} N_{y} \log N_{y} N_{x}\right)$. Choose $N=2^{n}$. Matlab fft,fft2, ifft, ifft2.
\rightarrow Fast implementation
- Different normalizations $\left(N_{x} N_{y}\right)$.

Convolution theorem

- Functions $f(x, y)$ and $g(x, y)$ with FT $F(u, v)$ and $G(u, v)$.
- $\mathcal{F}(f * g)=F \cdot G$
- $\mathcal{F}(f \cdot g)=F * G$

Notes

- Transforms must be normalized.
- Periodic boundary conditions are implied if DFT is used.
- Computational savings for large kernels, $O\left(N_{\mathrm{F}} \log N_{\mathrm{F}}\right)$ instead of $N_{\mathrm{F}} N_{\mathrm{G}}$.
- We usually display $\log |F|$ but the filter must be applied to F.

FT convolution in Matlab

To calculate $J=I * h$, i.e. $\mathcal{F}(J)=\mathcal{F}(I) \mathcal{F}(h)$ or $\hat{\jmath}=\hat{l} \hat{h}$

- Input: image I, mask h
- H=zeros(size(I)), put h in the middle of H
- H=ifftshift(H)
- FI=fft2(I) ; FH=fft2(H)
- FJ=FI.*FH
- J=real(ifft2(FJ))

Matlab's fftshift and ifftshift

$$
\begin{aligned}
& J=\mathrm{fftshift}(\mathrm{I}): \\
& \\
& \quad I(1,1) \rightarrow J(\lfloor R / 2\rfloor+1,\lfloor C / 2\rfloor+1)
\end{aligned}
$$

$$
\begin{aligned}
& I=\operatorname{ifftshift(J):} \\
& \quad J(\lfloor R / 2\rfloor+1,\lfloor C / 2\rfloor+1) \rightarrow I(1,1)
\end{aligned}
$$

where $\lfloor x\rfloor=\mathrm{floor}(\mathrm{x})=$ the largest integer smaller than x.

Filters

Low pass

- pixel averaging, a weighted average of neighbors
- convolution with $\sum h=1$
- high frequencies suppressed
- \hat{h} decreases with $|f|$

High pass

- pixel differences, a difference between neighbors
- convolution with $\sum h=0$
- low frequencies suppressed
- \hat{h} increases with $|f|$
$\hat{h}_{\mathrm{HP}}(f)=1-\hat{h}_{\mathrm{LP}}(f)$
Filter shapes - ideal, Gaussian, Butterworth, Chebyshev, Bessel. . .

Lowpass filtering - Butterworth filter I

Lowpass filtering - Butterworth filter II

Butterworth lowpass filter

FFT of the filtered image

Maximally flat passband filter $H_{l p}(u, v)=\frac{1}{1+\left(D(u, v) / D_{0}\right)^{2 / n}}$, where $D(u, v)=\sqrt{u^{2}+v^{2}}$

Lowpass filtering - Butterworth filter III

Original image

Filtered image

Highpass filtering — Butterworth filter I

Butterworth highpass filter

FFT of the filtered image

$$
H_{h p}(u, v)=1-H_{l p}(u, v)
$$

Highpass filtering - Butterworth filter II

Original image

Filtered image

DC component lost, some values are negative.

Highpass filtering - Narrow filter

Butterworth highpass filter

FFT of the filtered image

$$
H_{h p}(u, v)=1-H_{l p}(u, v)
$$

Highpass filtering - Narrow filter II

Filtered image
A very gentle high-pass filter. Original image is recovered except the DC component.

Ideal Lowpass Filter

Image size: 512×512 FD filter radius: 16

Fourier Domain Rep.
Spatial Representation

Central Profile

Ideal Lowpass Filter

Image size: 512×512 FD filter radius: 8

Fourier Domain Rep.
Spatial Representation

Central Profile

The Uncertainty Relation

If $\Delta x \Delta y$ is the extent of the object in space and if $\Delta u \Delta v$ is its extent in frequency then, $\Delta x \Delta y \cdot \Delta u \Delta v \geq \frac{1}{16 \pi^{2}}$

A small object in space has a large frequency extent and vice-versa.

Ideal Lowpass Filter

Original Image

Ideal Lowpass Filter

Image size: 512×512
FD filter radius: 16

Filtered Image

Filtered Power Spectrum

Original Image

Ideal Highpass Filter

Image size: 512×512
FD notch radius: 16

Fourier Domain Rep. Spatial Representation

Central Profile

Ideal Highpass Filter

Image size: 512×512
FD notch radius: 16

Filtered Image*
Filtered Power Spectrum
Original Image

Ringing artifacts

Ringing artifacts

Gaussian filter

FT of a Gaussian is a Gaussian

Gaussian filter

Blurring but no ringing

Gaussian Lowpass Filter

Filtered Image
Filtered Power Spectrum

Image size: 512×512 SD filter sigma $=8$

Original Image

Ideal Lowpass Filter

Image size: 512×512
FD filter radius: 16

Filtered Image

Filtered Power Spectrum

Original Image

Frequency analysis of the spatial convolution - Simple averaging

Frequency analysis of the spatial convolution - Gaussian smoothing

Simple averaging vs. Gaussian smoothing

simple averaging

Gaussian smoothing

Both images blurred but filtering by a constant mask still shows up some high frequencies!

Frequency analysis of the spatial convolution - Simple averaging

filtered image

Frequency analysis of the spatial convolution - Gaussian smoothing

filtered image

Simple averaging vs. Gaussian smoothing

Both images blurred but filtering by a constant mask still shows up some high frequencies!

Introduction

Noise
Spatial filtering
Frequency domain filtering
Non-linear filtering
Filtering applications
Denoising by linear filtering
Wavelets

Non-linear filtering

Typical goal: smooth homogeneous areas to reduce noise without blurring of image edges

Output is a non-linear function of a pixel value and those of its neighbours.

Simple linear averaging for noise reduction

$$
\begin{aligned}
& 3 \times 3 \text { neighborhood } \\
& h=\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Center-weighted filters (approximate a Gaussian)

$$
h=\frac{1}{10}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right], \quad h=\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Simple linear averaging for noise reduction Example

Simple linear averaging for noise reduction

Example

with additive noise

Simple linear averaging for noise reduction

Example

filtered, 3×3 mask

Simple linear averaging for noise reduction

 Example
filtered, 7×7 mask

Non-linear smoothing

Goal: reduce blurring of image edges during smoothing Homogeneous neighbourhood: find a proper neighbourhood where the values have minimal variance.

Robust statistics: something better than the mean.

Rotation mask

Rotation mask 3×3 seeks a homogeneous part at 5×5 neighbourhood. Together 9 positions, 1 in the middle +8 on the image

1

2

7

8

The mask with the lowest variance is selected and used for averaging.

Rotation mask—original image

Rotation mask—first filtration

Rotation mask—second filtration

Rotation mask—third filtration

Rotation mask-fourth filtration

Rotation mask—final (fifth) filtration

Nonlinear smoothing — Robust statistics

Order-statistic filters

- median
- Sort values and select the middle one.
- A method of edge-preserving smoothing.
- Particularly useful for removing salt-and-pepper, or impulse noise.
- trimmed mean
- Throw away outliers (e.g. 10\% of the values) and average the rest.
- More robust to a non-Gaussian noise than a standard averaging.

Median filtering

100	98	102
99	105	101
95	100	255

Mean $=117.2$
median: 959899100100101102105255
Very robust, up to 50% of values may be outliers.

Nonlinear smoothing examples

noisy image

median 3×3

median 7×7

- Suppresses impulse noise very well
- Damages thin edges

Median filtering for noise reduction
Example

Median filtering for noise reduction

Example

with additive noise

Median filtering for noise reduction
Example

median filtered, 3×3 mask

Introduction

Noise

Spatial filtering
Frequency domain filtering
Non-linear filtering
Filtering applications

Denoising by linear filtering
Wavelets

Filtering for object detection

Cross-correlation for pattern matching

$$
g(x, y)=\sum_{k} \sum_{l} h(k, I) f(x+k, y+I)=h(x, y) \star f(x, y)
$$

Cross-correlation is not, unlike convolution, commutative

$$
h(x, y) \star f(x, y) \neq f(x, y) \star h(x, y)
$$

When $h(x, y) \star f(x, y)$ we often say that h scans f.
Cross-correlation is related to convolution through

$$
h(x, y) \star f(x, y)=h(x, y) * f(-x,-y)
$$

Cross-correlation is useful for pattern matching

Cross-correlation

This is perhaps not exactly what we expected and what we want. The result depends on the amplitudes.

Normalised cross-correlation

Sometimes called correlation coefficient

$$
c(x, y)=\frac{\sum_{k} \sum_{l}(h(k, I)-\bar{h})(f(x+k, y+I)-\overline{f(x, y)})}{\sqrt{\sum_{k} \sum_{l}(h(k, l)-\bar{h})^{2} \sum_{k} \sum_{l}(f(x+k, y+I)-\overline{f(x, y)})^{2}}}
$$

- \bar{h} is the mean of h
- $\overline{f(x, y)}$ is the mean of the neighbourhood around (x, y)
- $\sum_{k} \sum_{l}(h(k, l)-\bar{h})^{2}$ and
$\sum_{k} \sum_{l}(f(x+k, y+l)-\overline{f(x, y)})^{2}$ are variances.
- $-1 \leq c(x, y) \leq 1$

Normalised cross-correlation

The dark blue regions stand for undefined values (NaN), where variance is zero.

Normalised cross-correlation - real images

Normalised cross-correlation - non-maxima suppression

Red rectangle denotes the pattern. The crosses are the 5 highest values of NCC after non-maxima suppression.

Normalised cross-correlation - non-maxima suppression

Red rectangle denotes the pattern. The crosses are the 10 highest values of NCC after non-maxima suppression.
The algorithm finds the cow in any position in the image.
(However, it does not scale)

Filtering for visual image improvement

- Local contrast adjustment
- Practical sharpening

Homomorphic filtering

- Aim: normalize the brightness across an image; increase contrast.
- Image is a product of illumination and reflectance components: $f(x, y)=i(x, y) r(x, y)$
- Illumination i - slow spatial variations (low frequency)
- Reflectance r - fast varitations (dissimilar objects)
- Use logarithm to separate the components
- Filter the logarithms

Homomorphic filtering - cont.

$$
\begin{gathered}
f(x, y)=i(x, y) r(x, y) \\
z(x, y)=\ln f(x, y)=\ln i(x, y)+\ln r(x, y)
\end{gathered}
$$

Fourier pair

$$
Z(u, v)=I(u, v)+R(u, v)
$$

Filtering by a high-pass filter

$$
S(u, v)=H(u, v) Z(u, v)=H(u, v) I(u, v)+H(u, v) R(u, v)
$$

back to space $s(x, y)=\mathcal{F}^{-1}\{S(u, v)\}$ and back from log domain

$$
g(x, y)=\exp (s(x, y))
$$

We suppress variations in illumination and enhance reflectance component.

Homomorphic filtering - filters

Modified Butterworth filter

Remember: The filter is applied to $Z(u, v)$. Not to $F(u, v)$!

Homomorphic filtering - results

Original image.

Filtered image.

Image sharpening

- Correct for optical imperfection
- Correct for incorrect focus
- Improve visual appearance

Laplace filter sharpening

$$
\begin{aligned}
\nabla^{2} f & =\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \\
\nabla^{2} f & \approx\left[\begin{array}{ccc}
1 & -2 & 1
\end{array}\right] * f+\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] * f \\
& =\underbrace{\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & 0
\end{array}\right]}_{h} * f
\end{aligned}
$$

Other approximations for $h \approx \nabla^{2}$ possible.

Laplace filter sharpening

original in black\&white

Laplace filter sharpening

Laplace filter sharpening

$$
\check{f}=f-w \nabla^{2} f
$$

Laplace filter sharpening

$$
\check{f}=f-w \nabla^{2} f
$$

sharpened, $w=1$, clipped to the original range

Laplace filter sharpening

$$
(R, G, B) \rightarrow(H, S, V) \rightarrow(H, S, V) \rightarrow(R, G, B)
$$

original

Laplace filter sharpening

$$
(R, G, B) \rightarrow(H, S, V) \rightarrow(\check{H}, S, V) \rightarrow(R, G, B)
$$

sharpened, $w=1$

Unsharp masking

$$
f_{e}=f-\left(f * G_{\sigma}\right) \quad \check{f}=f+\alpha f_{e}=(1+\alpha) f-\alpha\left(f * G_{\sigma}\right)
$$

original

Unsharp masking

original in black\&white

Unsharp masking

smoothed, $\sigma=3$

Unsharp masking

sharpened, $\alpha=0.9$

Unsharp masking

original

Unsharp masking

sharpened, $\alpha=0.9$

Unsharp masking II

Parameter dependence

original in black\&white

Unsharp masking II

Parameter dependence

unsharp masked, $\sigma=3, \alpha=0.9$

Unsharp masking II

Parameter dependence

unsharp masked, $\sigma=15, \alpha=0.6$

Unsharp masking II

Parameter dependence

Unsharp masking II

Parameter dependence

unsharp masked, $\sigma=3, \alpha=0.9$

Unsharp masking II

Parameter dependence

unsharp masked, $\sigma=15, \alpha=0.6$

Unsharp masking III

Reducing noise sensitivity

$$
\begin{aligned}
& f_{e}=f-\left(f * G_{\sigma}\right) \\
& \check{f}=f+\alpha f_{e}=(1+\alpha) f-\alpha\left(f * G_{\sigma}\right)
\end{aligned}
$$

Unsharp masking III

Reducing noise sensitivity

$$
\begin{aligned}
& f_{e}=f-\left(f * G_{\sigma}\right) \\
& \check{f}= \begin{cases}(1+\alpha) f-\alpha\left(f * G_{\sigma}\right) & \text { if }|\nabla f|>T \\
f & \text { otherwise }\end{cases}
\end{aligned}
$$

Introduction

Noise

Spatial filtering
Frequency domain filtering

Non-linear filtering
Filtering applications

Denoising by linear filtering
Wavelets

Noise-Free Image and Uncorrelated Noise Field

image

Gaussian noise field

Spectra of Noise-Free Image and Uncorr. Noise Field

image center row log power spectrum

noise field center row log power spectrum

Sum of Noise-Free Image and Uncorrelated Noise Field

image + noise field

image + noise field center row $\log \mathrm{PS}$

Power Spectra of Noise-Free Image and Noise Field

original image

noise image

Power Spectra of Sum of Image and Noise Field

original image

noisy image

Additive Noise: Reduce Through Blurring?

red indicates image > noise

image $\mathrm{PS}>$ noise PS

Additive Noise: Reduction Through Blurring.

PS of Gaussian blurred image
Gaussian Blurred Image

Image Degradation Model

So far, we have considered only additive noise. Before going further it will be useful to consider a more general model of image degradation, one that includes convolution with a pointspread ${ }^{1}$ function, H , as well as additive noise.

[^0]
Lenses

A properly designed lens will focus the light emanating from a point and thereby reduce the blurring. But no lens can do this perfectly. In fact, the lens adds its own distortion. The result is an optical transfer function, $\mathrm{H}(r, c)$, that is convolved with the image.

Image Degradation Model

Image Degradation Model (Frequency Domain)

Image Degradation Model (Frequency Domain)

Wiener filter

Problem definition

Observed image in frequency space

$$
J(u, v)=I(u, v) H(u, v)+N(u, v)=I H+N
$$

Find a filter

$$
\hat{I}(u, v)=W(u, v) J(u, v)=W(I H+N)
$$

such that $\quad \varepsilon^{2}=\mathrm{E}\left[\int|I(u, v)-\hat{l}(u, v)|^{2} \mathrm{~d} u \mathrm{~d} v\right] \quad$ is minimized

Wiener filter

Derivation

$$
\varepsilon^{2}=\mathrm{E}\left[\int|I(u, v)-\tilde{l}(u, v)|^{2} \mathrm{~d} u \mathrm{~d} v\right]
$$

Minimize for each u, v

$$
\begin{aligned}
& \mathrm{E}\left[|I(u, v)-\tilde{I}(u, v)|^{2}\right]=\mathrm{E}\left[|I-W(H I+N)|^{2}\right]= \\
& |1-W H|^{2} \underbrace{\mathrm{E}\left[|I|^{2}\right]}_{P_{I}}+|W|^{2} \underbrace{\mathrm{E}\left[|N|^{2}\right]}_{P_{N}}=|1-W H|^{2} P_{I}+|W|^{2} P_{N}
\end{aligned}
$$

since I and N are uncorrelated

Wiener filter

Derivation

$$
\text { minimize }|1-W H|^{2} P_{I}+|W|^{2} P_{N}
$$

Take a complex derivative with respect to W. Recall that $\left(|x|^{2}\right)^{\prime}=\bar{x}$

$$
\begin{aligned}
-H \overline{1-W H} P_{I}+\bar{W} P_{N} & =0 \\
\bar{W}\left(|H|^{2} P_{I}+P_{N}\right) & =H P_{I}
\end{aligned}
$$

The Wiener filter is

$$
W=\frac{\bar{H} P_{I}}{|H|^{2} P_{I}+P_{N}}
$$

Wiener filter

$$
W=\frac{\bar{H} P_{l}}{|H|^{2} P_{l}+P_{N}}
$$

- For frequencies where $P_{I} \gg P_{N}$, Wiener filter approximates an inverse filter, $W \approx 1 / H$.
- For frequencies where $P_{I} \ll P_{N}$, Wiener filter filters the noise out, $W \approx 0$.
- Only P_{I} and P_{N} are needed. Sometimes $H=\delta$

Noise Reduction Through LMS Filtering ${ }^{1}$

image

Gaussian noise field

Noise Reduction Through LMS Filtering ${ }^{1}$

image

noisy image

Additive Noise (Power Spectra)

original image

noisy image

Additive Noise (Power Spectra)

Wiener filtered image

Wiener filter

Additive Noise (Power Spectra)

Wiener filtered image

original image

Additive Noise

noisy image

Wiener filtered image

Additive Noise

Wiener filtered image

original image

Noise Reduction Through LMS Filtering ${ }^{1}$

image

noisy image $J=I^{*} h+N$

Image*PSF + Noise (Power Spectra)

original image

noisy image $J=I^{*} h+N$

Image*PSF + Noise (Power Spectra)

Wiener filtered image

Wiener filter

Image*PSF + Noise

noisy image $\mathrm{J}=\mathrm{I} * \mathrm{~h}+\mathrm{N}$

Wiener filtered image

Image*PSF + Noise

Wiener filtered image

original image

LMS Image Restoration (Real Example)

LMS Image Restoration (Real Example)

Noise Estimation

Pointspread Function Estimation

LMS Image Restoration (filtered)

Detail of Results

original image

filtered image

The contrast of these has been increased to make the differences more visible.

matlab's wiener2

Local adaptive Wiener filtering

- Each window filtered separately.
- Signal variance estimated from image.
- Noise assumed i.i.d. Gaussian.
- Neglects spatial correlation
- Matlab function wiener2

Local adaptive Wiener filtering

original

Local adaptive Wiener filtering

original in black\&white

Local adaptive Wiener filtering

original+noise, i.i.d. Gaussian, $\sigma=60$

Local adaptive Wiener filtering

local Wiener filtering, wiener2

Local adaptive Wiener filtering

original in black\&white

Introduction

Noise

Spatial filtering
Frequency domain filtering
Non-linear filtering
Filtering applications
Denoising by linear filtering
Wavelets

Wavelets

- Discrete wavelet transform

$$
f(x)=\sum_{k} b_{k} \varphi\left(2^{J} x-k\right)+\sum_{j \geq J} \sum_{m} c_{m}^{j} \psi\left(2^{j} x-m\right)
$$

φ - scaling function (low pass)
ψ - wavelet (high pass)
b - lowpass coefficients
c — highpass/wavelet/detail coefficients

- Fast DWT algorithms

Wavelets

- Discrete wavelet transform

$$
f(x)=\sum_{k} b_{k} \varphi\left(2^{J} x-k\right)+\sum_{j \geq J} \sum_{m} c_{m}^{j} \psi\left(2^{j} x-m\right)
$$

φ - scaling function (low pass)
ψ - wavelet (high pass)
b - lowpass coefficients
c — highpass/wavelet/detail coefficients

- Fast DWT algorithms
- 2D Discrete wavelet transform

$$
\begin{aligned}
f(x, y)= & \sum_{k, k^{\prime}} b_{k, k^{\prime}} \varphi\left(2^{J} x-k\right) \varphi\left(2^{J} y-k^{\prime}\right) \\
& +\sum_{j \geq J} \sum_{m, m^{\prime}} c_{m, m^{\prime}}^{\prime} \psi\left(2^{j} x-m\right) \psi\left(2^{j} y-m^{\prime}\right)
\end{aligned}
$$

- Separability \rightarrow quick decomposition

Wavelets

- Discrete wavelet transform
- Continuous wavelet transform
- Shift invariant (overcomplete) wavelet transform
- General decomposition

$$
f(x, y)=\sum_{k, k^{\prime}} b_{k, k^{\prime}} \varphi_{k, k^{\prime}}(x, y)+\sum_{j \geq J} \sum_{m, m^{\prime}} c_{m}^{j} \psi_{m, m^{\prime}}(x, y)
$$

- Orthogonal basis functions, localized in space and frequency

Wavelets

Daubechies family wavelets

Wavelet decomposition

original in black\&white

Wavelet decomposition

Wavelet decomposition

wavelet decomposition, 1 level, intensity rescaled

Wavelet decomposition

wavelet decomposition, 2 levels, intensity rescaled

Wavelet decomposition

wavelet decomposition, 3 levels, intensity rescaled

Wavelet compression

- Wavelet transform (analysis)
- Order coefficients by magnitude
- Only use M largest (set the rest to zero)
- Inverse wavelet transform (synthesis)

2D Wavelet compression example

Separable decomposition, alternate x and y.

2D Wavelet compression example

Separable decomposition, alternate x and y.

2D Wavelet compression example

Separable decomposition, alternate x and y.

2D Wavelet compression example

Separable decomposition, alternate x and y.

95\% Wavelet Co/Dec of Daubechies

2D Wavelet compression example

Separable decomposition, alternate x and y.

95\% DCT Co/Dec of Ingrid

Wavelet denoising

Idea: small coefficients are due to noise

- Wavelet decomposition (DWT,SWT)
- Thresholding
- Wavelet reconstruction

Wavelet denoising

Idea: small coefficients are due to noise

- Wavelet decomposition (DWT,SWT)
- Thresholding
- Wavelet reconstruction

Why does it work well:

- Wavelet decomposition is parsimonious (lot of zeros)
- Wavelets are orthogonal
- Wavelets are well localized in space and smooth
- Wavelets are multiscale
- Wavelet family is very large

Thresholding

- Hard and soft

Thresholding

- Hard and soft
- Threshold choice
- Universal threshold (Donoho)

$$
\lambda=\hat{\sigma} \sqrt{2 \log N}
$$

- $\hat{\sigma}$ is estimated from fine scale coefficients
- SURE (Stein's unbiased estimator of risk), cross-validation...

Wavelet denoising example

original in black\&white

Wavelet denoising example

noisy

Wavelet denoising example

wavelet denoised, symlets 4 , threshold 10

Wavelet denoising example

wavelet denoised, symlets 4 , threshold 20

Wavelet denoising example

wavelet denoised, symlets 4 , threshold 40

Wavelet denoising example

wavelet denoised, symlets 4 , threshold 60

Wavelet denoising example

wavelet denoised, symlets 4 , threshold 80

Wavelet denoising example

wavelet denoised, symlets 4, threshold 100

Wavelet denoising example

wiener denoised

Conclusions

- Filtering in space
- Filtering in frequency domain
- Smoothing, sharpening
- Denoising
- Wiener filter
- Wavelet denoising

[^0]: ${ }^{1} \mathrm{H}$ is also referred to as the optical transfer function.

