Numerical Integration of
Partial Differential Equations (PDEs)

e Introduction to PDEs.




Introduction to PDEs.

Definition of Partial Differential Equations.
Second Order PDEs.
-Elliptic

-Parabolic
-Hyperbolic

Linear, nonlinear and quasi-linear PDE:s.

What is a well posed problem?

Boundary value Problems (stationary).

Initial value problems (time dependent).




Differential Equations

A differential equation 1s an equation for an
unknown function of one or several variables that
relates the values of the function itself and of its
derivatives of various orders.

* Ordinary Differential Equation:
Function has 1 independent variable.

 Partial Differential Equation:
At least 2 independent variables.



Physical systems are often
described by coupled
Partial Differential Equations (PDEs)

Maxwell equations

Navier-Stokes and Euler equations
in fluid dynamics.
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Einstein-equations for general relativity



PDEs definitions

* General (implicit) form for one function u(x,y) :
F T]? ]?I-[:I]y)l Eﬂ?jETJ?)] E}?J[;TJ?)]. = |!E:}Efj[:.Jj'::lIj'i):I T — U:I
ox oy dxchy
* Highest derivative defines order of PDE

* Explicit PDE => We can resolve the equation
to the highest derivative of u.

* Linear PDE => PDE is linear in u(x,y) and
for all derivatives of u(x,y)

« Semi-linear PDEs are nonlinear PDEs, which
are linear in the highest order derivative.



Linear PDEs of 2. Order
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ou(z,y)

du(z,y)
P e(r,y)

flu,z,y)=10

e a(x,y)c(x,y) —b(x,y)2/4 >0 Elliptic
* a(x,y)c(x,y) —b(x,y)2 /4 =0 Parabolic
o a(x,y)c(x,y) —b(x,y)2 /4 <0 Hyperbolic

Quasi-linear: coefficients depend on u and/or
first derivative of u, but NOT on second deri6vatives.



PDEs and Quadratic Equations

* (Quadratic equations in the form

Az*+ Bay+ Cy*+ Dz + Ey+ F =0

describe cone sections.

« a(x,y)c(x,y) —b(x,y)2/4>0 Ellipse
e a(x,y)c(x,y) —b(x,y)2 /4 =0 Parabola
« a(x,y)c(x,y) —b(x,y)2 /4 <0 Hyperbola




With coordinate transformations these equations

can be written in the standard forms:
R

Ellipse: T

(1

Parabola: yE = dax

:I:E yE
Hyperbola: 7 — 37 =1

Coordinate transformations can be also applied to
get rid of the mixed derivatives 1n PDEs.

(For space dependent coefficients this is only
possible locally, not globally)




Parabola- cutting plane
parallel to side of cone.

Circle and Ellipse Hyperbolas




LLinear PDEs of 2. Order

& u(z,y) *u(z,y)
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* Please note: We still speak of linear PDEs, even 1f
the coefficients a(x,y) ... e(x,y) might be nonlinear
inx and y.

* Linearity 1s required only in the unknown function u
and all derivatives of u.

* Further ssmplification are:
-constant coefficients a-e,
-vanishing mixed derivatives (b=0)
-no lower order derivates (d=e=0)
-a vanishing function =0.
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Second Order PDEs with more then
2 independent variables

”1 ”1 Siu
Lu=) ) a;; . plus lower order terms = 0.
i=1 j=1 1

Classification by eigenvalues of the coefficient matrix:

« Elliptic: All eigenvalues have the same sign. [Laplace-Eq.]

e Parabolic: One eigenvalue 1s zero. [Diffusion-Eq.]

« Hyperbolic: One eigenvalue has opposite sign. [Wave-Eq.]

« Ultrahyperbolic: More than one positive and negative eigenvalue.

Mixed types are possible for non-constant coefficients,

appear frequently in science and are often difﬁcult1 {0 solve.



Elliptic E

* Occurs mainly for stationary problems.
* Solved as boundary value problem.

* Solution 1s smooth 1f boundary conditions allow.

Example: Poisson and Laplace-Equation (f=0)

Vi = f
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Parabolic Equations

* The vanishing eigenvalue often related to time
derivative.

* Describes non-stationary processes.
e Solved as Initial- and Boundary-value problem.

» Discontinuities / sharp gradients smooth out
during temporal evolution.

Example: Diffusion-Equation, Heat-conduction



Hyperbolic Equations
The opposite sign eigenvalue 1s often related to the
time derivative.
Initial- and Boundary value problem.

Discontinuities / sharp gradients in initial
state remain during temporal evolution.

A typical example 1s the Wave equation.
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With nonlinear terms involved sharp gradients can
form during the evolution => Shocks
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Well posed problems
(as defined by Hadamard 1902)

A problem 1s well posed 1f:

* A solution exists. 1865-1963

» The solution is unique. WW?

* The solution depends continuously on the data

(h 11nr]9ry and/or 1itial conditions)
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Problems which do not fulfill these criteria are ill-posed.

Well posed problems have a good chance to be solved
numerically with a stable algorithm. 15



[11-posed problem
I I

[11-posed problems play an important role

in some areas, for example for inverse problems
like tomography.

Problem needs to be reformulated for
numerical treatment.

=> Add additional constraints, for example
smoothness of the solution.

Input data need to be regularized / preprocessed.
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[1I-conditioned problems

Even well posed problems can be ill-conditioned.

=> Small changes (errors,noise) in data lead
to large errors in the solution.

Can occur if continuous problems are solved
approximately on a numerical grid.
PDE => algebraic equation in form AXx=D

Condition number of matrix A:

Amax (A)
Amin(A)

Amax(4), Amin(4) are maximal and minimal eigenvalues of A.

Well conditioned problems have a
low condition number.

K(A) =
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How to solve PDEs?

* PDEs are solved together with appropriate
Boundary Conditions and/or Initial Conditions.

« Boundary value problem
-Dirichlet B.C.: Specify u(x,y,...) on boundaries
(say at x=0, x=Lx, y=0, y=Ly 1n a rectangular box)
-von Neumann B.C.: Specify normal gradient of
u(x.,y,...) on boundaries.

In principle boundary can be arbitrary shaped.
(but difficult to implement in computer codes)

Boundary walue
Rt & given along the

e % boundary curve




boundary

s
O
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roblem

g=

* Boundary values are usually specified on
all boundaries of the computational domain.

 Initial conditions are specified in the entire
computational (spatial) domain, but only
for the 1itial time t=0.

* Initial conditions as a Cauchy problem:

-Specify nitial distribution u(x,y,...,t=0)
[for parabolic problems like the Heat equation]

- Specify u and du/dt for t=0
[for hyperbolic problems like wave equation. ]
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Initial value problem
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Cauchy Boundary conditions

« Cauchy B.C. impose both Dirichlet
and Von Neumann B.C. on part of
the boundary (for PDEs of 2. order).

« More general: For PDEs of order n the
Cauchy problem specifies u and all
derivatives of u, up to the order n-1
on parts of the boundary.

* In physics the Cauchy problem i1s often
related to temporal evolution problems
(initial conditions specified for t=0)

Augustin Louis Cauchy
1789-1857
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Numerical Integration of
Partial Differential Equations (PDEs)

Semi-analytic methods to solve PDEs.




Semi-analytic methods to solve PDEs.

* From systems of coupled first order PDEs
(which are difficult to solve) to uncoupled

PDEs of second order.

« Example: From Maxwell equations
to wave equation.

* (Semi) analytic methods to solve the
wave equation by separation of variables.

» Exercise: Solve Diffusion equation
by separation of variables.




How to obtain uncoupled 2. order
PDESs from physical laws?

Example: From Maxwell equations to
wave equations.

Maxwell equations are a coupled system of first
order vector PDE:s.

Can we reformulate this equations
to a more simple form?

Here we use the electromagnetic potentials,
vectorpotential and scalar potential.

26



Maxwell equations

OE
V xB = g+ eopto—
MO?)B €0 L0 7
V xE =
Ot
V- -B = O1
VE = —p 138?16-81859axwe
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Maxwell Equations:

) JE
VxB = ;z-n;];— €oflo
VXE = ——
8 ot
V.-B = Ul
V-E=—p
€0
We use the electromagnetic potentials
B =VxA
JA
E=-V& - Bt

together with the Lorenz Gauge condition (after Ludvig Lorenz 1829-1891). Lorenz
Gauge is often wrongly referred to as Lorentz Gauge (after Hendrik Lorentz, who
made many discoveries in electro dynamics, but has nothing to do with the Lorenz
Gauge. )
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With these definitions we get:

) JA
VxV xA = uj+ F-:JHU.{— (—"‘7‘1’ — {—)

ot Ot
Vx(—ve -2 o NV AY
ot ot
V-VxA=0¢
A1
Vo (-V® -2 = —
f)f €0

We use the vector identity V x V x A=V(V-A) - AA

and the definition eypg = ?}'j

1o JA
VIV-A)—AA = )+ : (—V‘I’—(—)

2ot
NV - A) 1
; —p

AP —
f}f €0
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» first equation:

)

After reordering the terms i

72
_£A+1FTA:

2 _Ot?

1€ A)

ot
Finally we use t.lwn.llil derive Wave equations:

1 O*A

—AA = Jip]
N 2 Ot? Kol

1 oo 1
—AD + — = —p

2 Ot ﬁ;.f
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What do we win with wave equations?

e Inhomogenous coupled system of
Maxwell reduces to wave equations.

 We get 2. order scalar PDEs
for components of electric and
magnetic potentials.

* Equation are not coupled and have
same form.

* Well known methods exist to solve
these wave equations.
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Wave equation

Electric charges and currents on right side of
wave-equation can be computed from other sources:

Moments of electron and 1on-distribution in
space-plasma.

The particle-distributions can be derived from
numerical simulations, e€.g. by solving the
Vlasov equation for each species.

Here we study the wave equation in vacuum for
simplicity.
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Wave equation 1n vacuum

1 0°A
—AA A =

2 852

1 O°D
—AD A 0 =

c? Ot?
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(Semi-) analytic methods

Example: Homogenous wave equation
1 9D
AP 4 ——— =
c> Ot?

Can be solved by any analytic function
f(x-ct) and g(x+ct).
As the homogenous wave equation 1s a

linear equation any linear combination of
f and g 1s also a solution of the PDE.

This property can be used to specify boundary
and 1nitial conditions. The appropriate coefficients
have to be found often numerically.
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Semi-analytic method: Variable separation
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'1he ODEs have the solutions:
Gy = exp(xikx), Py = exp(xtkct)

Or if yvou do not like complex functions:

[ ! * A Fh rw

by — uinfl*-wf‘\ coal ) (4)]
':li",: I.’J.J..].ll'l wil_ jq L ’k wil J"‘

)
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Any combination (4 possibilities) is a solution of our PDE!
, . . ; 2
We normalize & with the box length L, by k = 77k
T

Let's talk about Boundary Conditions. For example:

O(0,t) = O(L,. 1) = 0 = cos(kx) terms eliminated.



Semi-analytic method: Variable separation

Now lets apply initial conditions for ® and &
O(x,0) = p(x) (arbitrary) and O(x.0) =0
(I){J.‘_, 0) =0 = sin(kct) terms eliminated.

A particular solution of the PDE is:

Oz, t) = *-«111(; x) - (-{}H(';E::_‘ t)

Our PDE is linear =
Superposition of particular solutions is also a solution:

(1;- x, f Z;_”a;‘ Hl]li ) f'f}H('AEF: t)



Semi-analytic method: Variable separation

How to apply the initial condition ®(x.0) = p(x) 7

'-1‘.*1"11"{}-' — OC ";" "{"';T *
Fourier series: ®(x,0) = >/~ ay BIII{H.E)

withla; = I—ﬁ] T sin( f'-;_-; ) pla) dr

Provides us the required initial conditions and fixes the coefficients a;..
Usually we have to evaluate the integral for a;. numerically. (That's
why we call the method semi-analytic). For practical computations
we do not use an infinity number of modes £, but maximal the num-
ber of grid points n, in the r-direction.

O, t) =37 ap - 5111(Er

kerm
ST, 1)
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Semi-analytic method: Variable separation

Show: demo wave sep.pro

e

=

This 1s an IDL-program to
animate the wave-equation
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g @ Exercise:
1D diffusion equation

lecture diffusion draft.pro

This 1s a draft IDL-program to solve the
diffusion equation by separation of variables.

Task: Find separable solutions for
Dirichlet and von Neumann boundary conditions
and implement them.
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Numerical Integration of
Partial Differential Equations (PDEs)

Introduction to Finite Differences.




Introduction to Finite Differences.

Remember t]

he definition of the

differential quotient.

How to com;
with a finite

oute the differential quotient
number of grid points?

First order and higher order approximations.

Central and one-sided finite differences.

Accuracy of

methods for smooth

and not smooth functions.

Higher order derivatives.




Numerical methods

Most PDEs cannot be solved analytically.

Variable separation works only for some
simple cases and 1n particular usually not
for inhomogenous and/or nonlinear PDE:s.

Numerical methods require that the PDE
become discretized on a grid.

Finite difference methods are popular/
most commonly used in science. They replace
differential equation by difference equations)

Engineers (and a growing number of
scientists too) often use Finite Elements.
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Finite differences

Remember the definition of differential quotient:

df (x) — F(x) = lim f(x + h) — f(x)
dx h—0 h

How to compute differential quotient numerically?
Just apply the formular above for a finite h.

For simplicity we use an equidistant grid in
x=[0,h,2h,3h,......(n-1) h] and evaluate f(x)
on the corresponding grid points xi.

Grid resolution h must be sufficient high.

Depends strongly on function f(x)!
45



df (%) /dx

Accuracy of finite differences

We approximate the derivative of f(x)=sin(n x) on
a grid x=0 ...2 Pi with 50 (and 500) grid points by
df/dx=(f(x+h)-f(x))/h and compare

with the exact solution df/dx= n cos(n x)

d sin(n x)/dx=n cos(nx), n=1

045__ —
: Average error done by
) discretisation:
>or 1 50 grid points: 0.040
i 500 grid points: 0.004
_015 - =
Tl Bressssessrasa
0
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df(x)/dx

10

Accuracy of finite differences

We approximate the derivative of f(x)=sin(n x) on
a grid x=0 ...2 Pi with 50 (and 500) grid points by
df/dx=(f(x+h)-f(x))/h and compare

with the exact solution df/dx= n cos(n x)

d sin(n x)/dx=n cos(nx), n=8

i ¥

Average error done by
| discretisation:

|1 50 grid points: 2.49

I [1 500 grid points: 0.256




Higher accuracy methods

L'min Lmax L

Can we use more points for higher accuracy?
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Higher accuracy: Central differences

df/dx=(f(x+h)-f(x))/h computes the derivative
at x+h/2 and not exactly at x.

The alternative formular df/dx=(1(x)-f(x-h))/h
has the same shortcomings.

We introduce central differences:
df/dx=(f(x+h)-f(x-h))/(2 h) which provides
the derivative at x.

Central differences are of 2. order accuracy

instead of 1. order for the simpler methods
above.
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How to find higher order formulars?

For sufficient smooth functions we describe the function
f(x) locally by polynomial of nth order. To do so n+1
grid points are required. n defines the order of the scheme.

Make a Taylor expansion (Definition xi+1 = x; + Ax);

A 2 A 3
for = ik A Gq) + () + S () + O(Bx*)
2 3
fiin = fi— A (q) + S () — S () + O(AxY)
’ 2 1t 4Ax3 77 4
fira = i+ 2AxF (x;) + 2Ax°F7 (x;) + F(xi) + O(Ax™)
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How to find higher order formulars?

And by linear combination we get the central difference:
Py — 15—
20

f'(xi) - O(AX?)

At boundary points central differences might not be
possible (because the point i-1 does not exist at the
boundary 1=0), but we can still find schemes of the
same order by one-sited (here right-sited) derivative:

4fiy1 — fiy2 — 3f;

- O(Ax?)
2Ax

Fi(xi) =

Alternatives to one sited derivatives are periodic
boundary conditions or to introduce ghost-cellk.



Higher derivatives

How to derive higher derivatives?
From the Taylor expansion

Ax? Ax?

i = fid A 0q) + == F"(a) + =" (x) + O(x*)
Ax? Ax3

fioe = fi= BxF(q) + =" 0q) = =" (x) + O(Ax*)

we derive by a linear combination:

Basic formular used to discretise
2.order Partial Differencial Eguations



Higher order methods

By using more points (higher order polynomials) to
approximate f(x) locally we can get higher orders,
€.g. by an appropriate combination of

1 4

. Ax* Ax? Ax* 4 :
fit1 — fi + Axf (x;) + 5 f(x)+ 6 fo(x) + od () + O(AxT)
' - W LA TR ALt ey 4&\;3 LU SN 2&':‘4 (4) r. o n A
ii42 = fi + 24XT (Xj) + £Ax [ (Xi)+ 3 roixi)+ 3 I (xi )+ Ol4ax )
pr 3 4
i1 = i — A&xf )4 Ax F oY Ax Fr Y -l Ax FIY Y L O(AX)
I—1 | % LAty | E ST Y | 6 ST I | 24 i J T LY !
: 2 S 487 2Ax*
fi_a = £ —28xF (%) + 2Ax3F" (%)) — - - (x;) + ; Y (x) + 0o(Ax?)

we get 4th order central differences:

—firo 4+ 8fq —8fi_1 +f
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Accuracy of finite differences

We approximate the derivative of f(x)=sin(n x) on

a grid x=0 ...2 P1 with 50 (and 500) grid points with
1th, 2th and 4th order schemes:

1th order 2th order 4th order
n=1, 50 pixel 0.04 0.0017 5.4 10
n=1, 500 pixel | 0.004 1.7 10 4.9 10
n=8, 50 pixel 2.49 0.82 0.15
n=8, 500 pixel | 0.26 0.0086 4.5 107
n=20, 50 pixel | 13.5 9.9 8.1
n=20, 500 pix. | 1.60 0.13 0.0017
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What scheme to use?

Higher order schemes give significant better
results only for problems which are smooth
with respect to the used grid resolution.

Implementation of high order schemes makes
more effort and take longer computing time,
in particular for solving PDEs.

Popular and a kind of standard are
second order methods.

If we want to feed our PDE-solver with
(usually unsmooth) observed data higher
order schemes can cause additional problems.
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