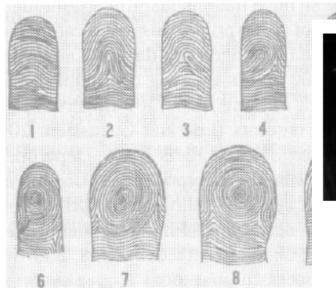
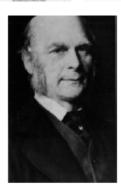
Classification

Daniel Novák

6.12, 2011, Prague


Acknowledgments: Xavier Palathingal, Andrzej Drygajlo, Handbook of Fingerprint Recognition



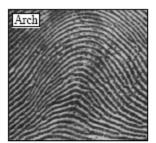
History

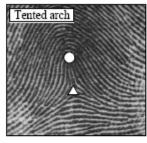
- In 1823, Purkinji proposed the first fingerprint classification, which classified into nine categories: (transverse curve, central longitudinal stria, oblique stripe, oblique loop, almond whorl, spiral whorl, ellipse, circle, and double whorl)
- Sir Francis Galton introduced the minutae features for fingerprint matching in late 19th century

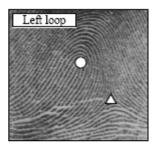
Date of Mean Day. Hont	h. Year.	Tuitials.	Day. Birth		Eye	Joker.	Sex.		Single, Marri or Widowal	iol.	Page of Register
20 12	89	1.45	22 :	2 70	Brow	a Grey	m		2		2310
land longth,	Head breadth maximum.	Height strating, less books of sixon.	Span of an from oppose flager tip	ite ordinary	Stani	p. Be	rottling quality.	Distance	of reading I numerals.	Spellen's type read at 20 feet.	
och. Tevilar,	Inch. Touths.	Inch. Touths.	Inch. Tue	On Die	Dis.	Be Cu	-	Inches.	Inches.	No. of Typ	? Normal.
1.3	5 95	66.6	5 67	7/128	193	88 :	200	19	19.	DE	Yes
ight sitting	Height of top of knee.	Length, ellow to	Length of	Konstrom of	Aighest	Beacti	on time.		Left Thomb.		Right Thumb.
chair.	when siming, hom beels.	finger tip, left arm.	of left hand.	hearing.	audible note. (by whistin)	To sight.	To sound.	1	453		dille
Troths.	Inch. Tenths.	Inch. Tentile.	Inch. Touths.	7 Normal.	Vibrations per second.	Hundreiths of a second.			480	VIII.	1300
5.5	207	17.75	45	Yen	2,000	15	15	-	超过	ш	1

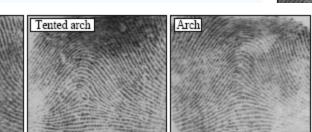
Classes

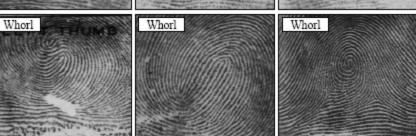
E E F

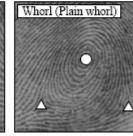

Arch: 3.7%, tented arch: 2.9%, left loop: 33.8%, right loop: 31.7%,

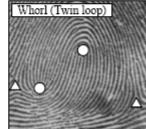

whorl: 27.9%

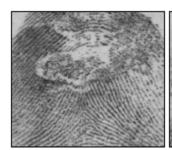

Left loop

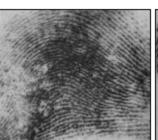

Patteren recognitionPROBLEM


Small-inter class variability Large intra-class variability

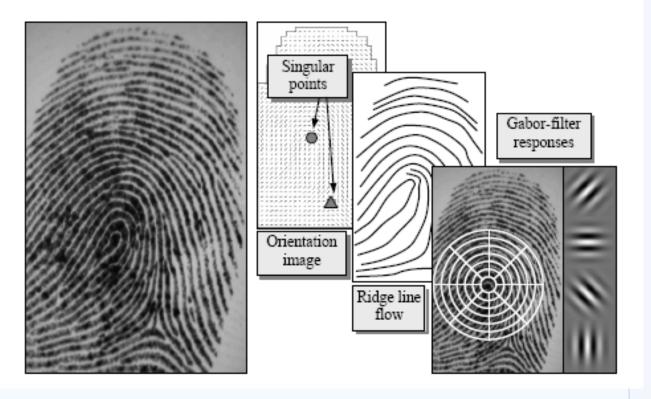








presence of noise



Features

用 用 用 用

- Based on global features
- Ridge line flow, orientation image, singular point, Gabor filters

Techniques

- Features:

- O = orientation image
- S = singularities
- -R = ridge flow,
- G = Gabor
- classification technique
 - Rb = rule-based
 - Sy = syntactic
 - Str = structural,
 - Sta = statistical
 - Nn = neural network
 - Mc = multiple classifiers

T	Features				Classifier					
Fingerprint classification approach	0	S	R	G	Rb	Sy	Str	Sta	Nn	Mc
Moayer and Fu (1975)	V					√				
Moayer and Fu (1976)	V					√				
Rao and Balck (1980)	V				\vdash	√	\vdash		\vdash	
Kawagoe and Tojo (1984)		√	√		√	\vdash	\vdash		\vdash	
Hughes and Green (1991)	√				\vdash	\vdash	\vdash		√	
Bowen (1992)	√	√							V	\vdash
Kamijo, Mieno, and Kojima (1992)	√								V	\vdash
Kamijo (1993)	√								V	\vdash
Moscinska and Tyma (1993)	V				√				V	\vdash
Wilson, Candela, and Watson (1994)	V								V	
Candela et al. (1995)	V		√		√				V	√
Omidvar, Blue, and Wilson (1995)	√								V	
Halici and Ongun (1996)	V				\vdash	\vdash	\vdash		V	
Karu and Jain (1996)		√			√	\vdash	\vdash		\vdash	
Maio and Maltoni (1996)	√				\vdash	\vdash	√		\vdash	
Ballan, Sakarya, and Evans (1997)		√			√	\vdash	\vdash		\vdash	
Chong et al. (1997)			√		√	\vdash	\vdash		\vdash	
Senior (1997)			√				√			
Wei, Yuan, and Jie (1998)	√				√				√	√
Cappelli et al. (1999)	√						√			
Cappelli, Maio, and Maltoni (1999)	√							√		
Hong and Jain (1999)		√	√		√					√
Jain, Prabhakar, and Hong (1999)				√				√	√	√
Lumini, Maio, and Maltoni (1999)	V						√			
Cappelli, Maio, and Maltoni (2000a)	V							√		√
Cho et al. (2000)		√			√					
Bartesaghi, Fernández, and Gómez (2001)		√			√					
Bernard et al. (2001)	√								√	
Marcialis, Roli, and Frasconi (2001)	√			√			√	V	√	√
Pattichis et al. (2001)	√				√				√	1
Senior (2001)	√		√		√		√		√	1
Yao, Frasconi, and Pontil (2001)				√				√		1
Cappelli, Maio, and Maltoni (2002a)	√							V		1
Jain and Minut (2002)			√		√					
Cappelli et al. (2003)	√							V		1
Yao et al. (2003)	V			V			√	V	V	√

Techniques

		Feat	tures		Classifier					
ingerprint classification approach		S	R	G	Rb	Sy	Str	Sta	Nn	Mc
Cappelli and Maio (2004)								√		√
Klimanee and Nguyen (2004)					√					
Senior and Bolle (2004)			√		√		√			√
Shah and Sastry (2004)								√	√	√
Wang and Xie (2004)	√		1		√					
Zhang and Yan (2004)	√		√		√					
Park and Park (2005)	√							√		
Neuhaus and Bunke (2005)							√			
Tan, Bhanu, and Lin (2005)										
Min, Hong, and Cho (2006)				√				√		√
Kristensen, Borthen, and Fyllingsnes (2007)				√					√	
Wang and Dai (2007)	√	1			√					
Hong et al. (2008)		1		√				1		√
Li, Yau, and Wang (2008)		1								

Techniques II

Syntatic: terminal symbols & production rules

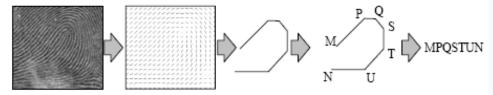
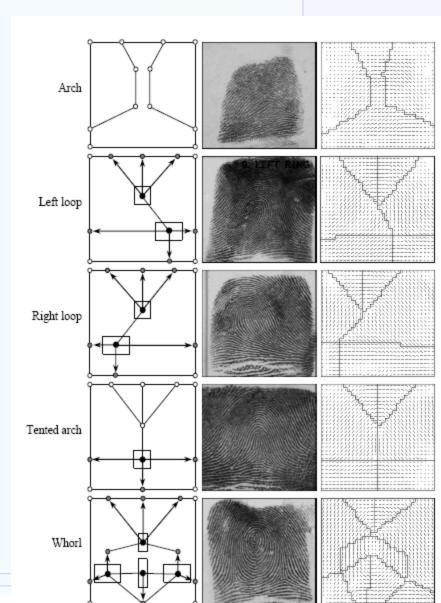



Figure 5.7. A schema of the string-construction approach in Rao and Balck (1980).

- Structural approach
- Statistical
 - Orientation image
 - k-nearest neighbor
 - 30x30 array, 1800 elements
 - PCA (the Karhunen-Loeve) transform

$$\mathbf{d} = [r \cdot \cos(2\theta), r \cdot \sin(2\theta)],$$

Techniques III

E E E

- Multiple classifier-based apparoaches
- PCASYS: Pattern-level Classification Automation systém
- Open Source: http://ffpis.sourceforge.net/
- Developed by NIST: http://www.nist.gov/index.html
 - National Institute of Standards and Technology

Fingerprint area Segmentation

Class + Ridge Tracing

fingerprint area

Enhancement

Enhanced image

feature vector (64 elements)

Orientation image Computation
and Registration

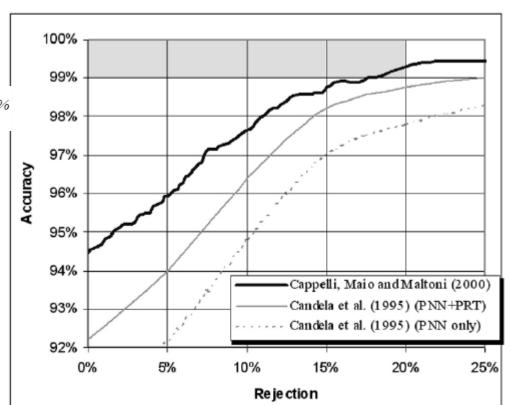
Orientation image (1680 elements)

Whorl module

Classification Evaluation

Rejection can improve accuracy

error rate =
$$\frac{\text{number of misclassified fingerprints} \times 100}{\text{total number of fingerprints}}$$
% accuracy = 100% - error rate.


Penetration rate: time constraint

penetration rate = $\frac{\text{number of accessed fingerprints} \times 100}{\text{total number of fingerprints in the database}}$

Confusion matrix (DB4)

True	Hypothesized class							
class	A	L	R	W	T			
A	420	6	3	1	11			
L	3	376	3	9	11			
R	5	1	392	6	16			
W	2	5	14	377	1			
T	33	18	9	0	278			

- Rejection can improve accuracy (DB14)
 - Unknown class
 - FBI target
 - NIST database -DB 4, DB14

Results on DB4, DB14

- Results on DB4

True	Hypothesized class							
class	A	L	R	W	T			
A	420	6	3	1	11			
L	3	376	3	9	11			
R	5	1	392	6	16			
W	2	5	14	377	1			
T	33	18	9	0	278			

True	Н	SS		
class	A+T	L	R	W
A+T	782	10	17	6
L	6	373	2	4
R	7	1	381	9
W	0	4	7	391

- Results on DB14

Method	Error rate (%)
Candela et al. (1995)	7.8
Wei, Yuan, and Jie (1998)	6.0
Cappelli, Maio, and Maltoni (2000a)	5.6

Method	Test set	5 cl	asses	4 classes		
		%	Weighted (%)	%	Weighted (%)	
Candela et al. (1995)	Second half	_	-	11.4	6.1	
Karu and Jain (1996)	Whole DB	14.6	11.9	8.6	9.4	
Senior (1997)	Random 542	_	_	_	8.4	
Cappelli, Maio, and Maltoni (1999)	Second half	7.9	6.5	5.5	_	
Hong and Jain (1999)	Whole DB	12.5	10.6	7.7	_	
Jain, Prabhakar, and Hong (1999)	Second half (*)	10.0	7.0	5.2	_	
Marcialis, Roli, and Frasconi (2001)	Second half (*)	12.1	9.6	_	_	
Senior (2001)	Second half	_	-	_	5.1	
Yao, Frasconi, and Pontil (2001)	Second half (*)	10.7	9.0	6.9	_	
Jain and Minut (2002)	Whole DB	_	_	8.8	9.3	
Cappelli et al. (2003)	Second half	4.8	3.7	3.7	3.4	
Yao et al. (2003)	Second half (*)	10.0	8.1	-	-	
Cappelli and Maio (2004)	Second half	7.0	5.9	4.7	5.4	
Wang and Xie (2004)	Whole DB	-	-	18.0	-	
Zhang and Yan (2004)	Whole DB	15.7	11.0	7.3	8.3	
Neuhaus and Bunke (2005)	Second half	19.8	-	-	-	
Park and Park (2005)	Second half	9.3	7.9	6.0	-	
Tan, Bhanu, and Lin (2005)	Second half	8.4	8.0	6.7	7.5	
Min, Hong, and Cho (2006)	Second half (*)	9.6	7.2	-	-	
Wang and Dai (2007)	Whole DB	11.5	9.4	-	-	
Hong et al. (2008)	Second half (*)	9.2	6.2	5.1	-	
Li, Yau, and Wang (2008)	Second half	6.5	7.0	5.0	-	

Biometrics errors

Daniel Novák

6.12, 2011, Prague

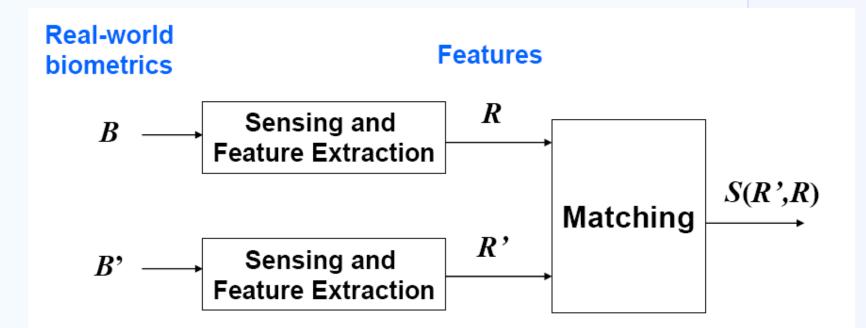
Acknowledgments: Xavier Palathingal, Andrzej Drygajlo, Handbook of Fingerprint Recognition

Example Iris & Speech

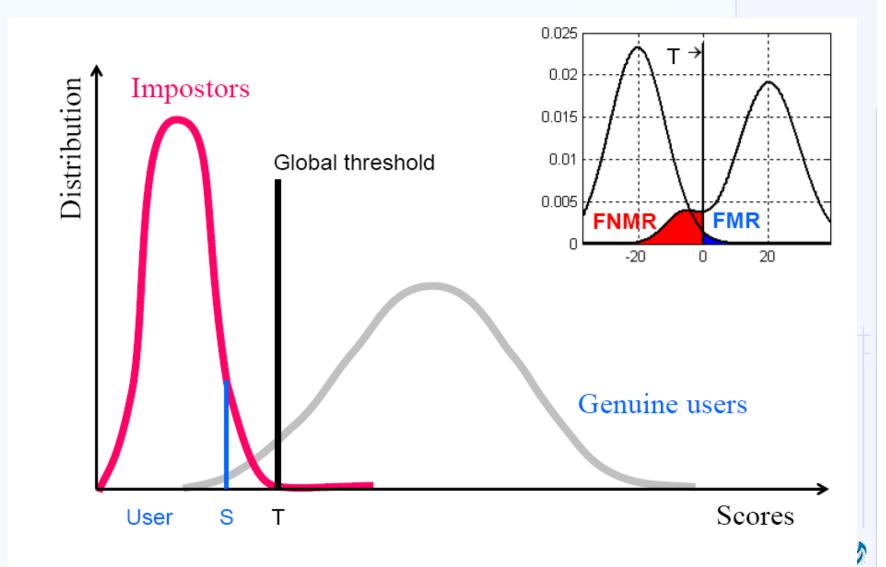
Example

- Assume 10'000 customers are signed up for biometric authentication and 1'000 transactions are done weekly
- Assume best-case biometric verification error of 1 in 1 million (iris)
- Assume best-case speaker verification error of 1 in 1 hundred
- How often are customers falsely billed?

Answer

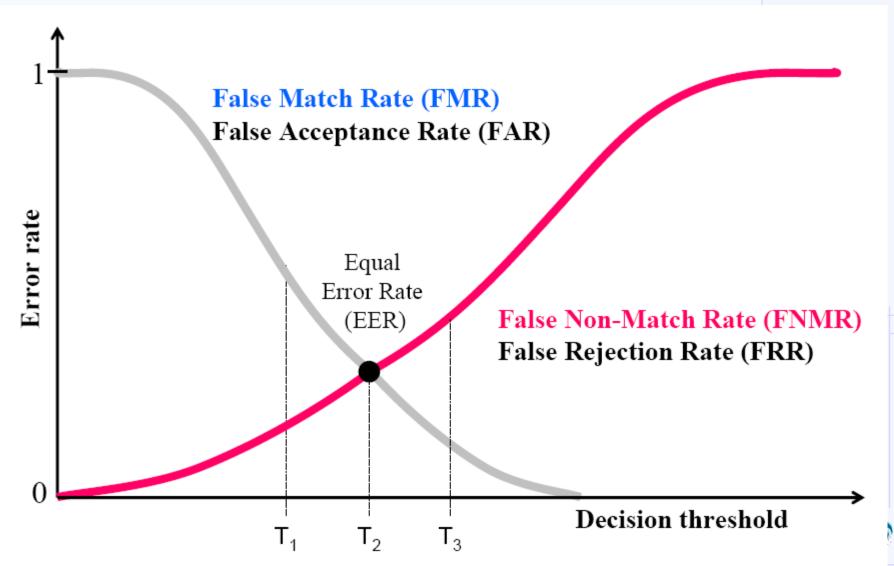

- On average 10 people are falsely billed each week
- On average 100 000 people are falsely billed each week

Matching



$$s(R',R) = s(f_{t'}(B'(t')), f_t(B(t))$$

Biometric matching makes a decision by computing a measure of the likelihood that the two input samples from two persons are the « same » and hence that the subjects are the same real-world identity.


Performance evaluation

FMR and FNMR

FA & FR

- False Accept (FA): Deciding that a (claimed) identity is a legitimate one while in reality it is an imposter;
 False Accept Rate (FAR)
- False Reject (FR): Deciding that a (claimed) identity is not legitimate when in reality the person is genuine;
 False Reject Rate (FRR)
- A FA results in security breaches, with an unauthorized person being admitted
- A FR results in convenience problems, since genuinely enrolled identities are denied access to the application

Scores distribution

$$H_a \Longrightarrow B' \neq B$$

Given two biometric samples, we can construct two possible hypotheses:

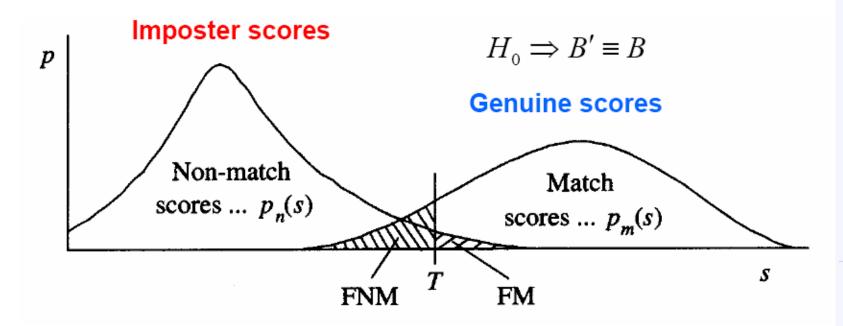
The null hypothesis: $H_0 \Rightarrow$ the two samples match

The alternate hypothesis: $H_a \Rightarrow$ the two samples do not match

Two kinds of error

Verification:

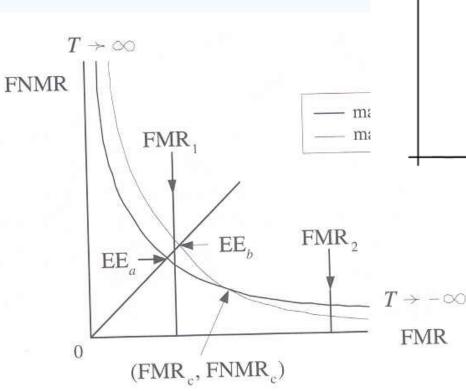
Decide H_0 is true: if s > T,

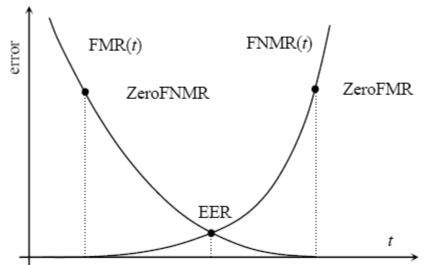

Decide H_a is true: if $s \le T$.

- Type I Error False Match (FM): Deciding that two biometrics are from the same identity, while in reality they are from different identities; the frequency with which this occurs is called the False Match Rate (FMR)
- Type II Error False Non-Match (FNM): Deciding that two biometrics are not from the same identity, while in reality they are from the same identity: the frequency with which this occurs is called the False Non-Match Rate (FNMR)
- Correct Match: correctly deciding that two biometric samples match
- Correct Non-Match: correctly deciding that the samples do not match

Two kinds of error

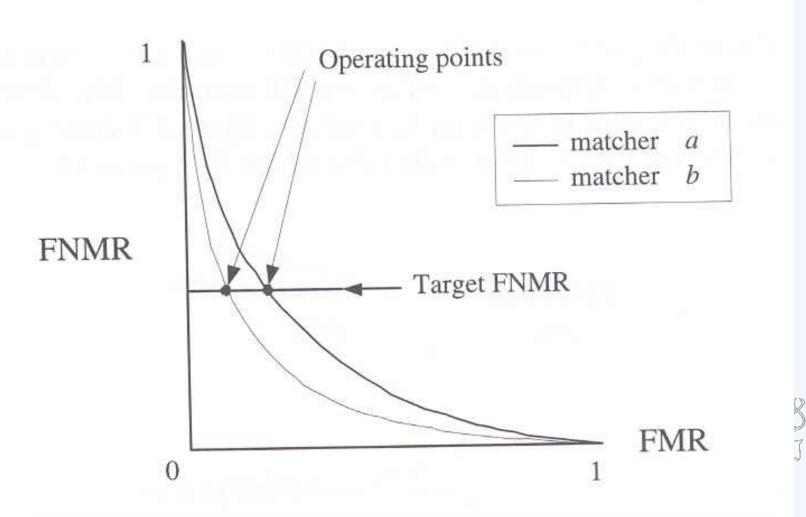
$$H_a \Longrightarrow B' \neq B$$


$$\text{FNMR}(T) = \int_{s=-\infty}^{T} p_m(s) ds$$

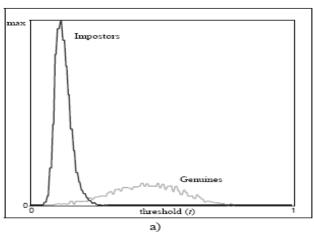

$$FMR(T) = \int_{s=T}^{\infty} p_n(s) ds$$

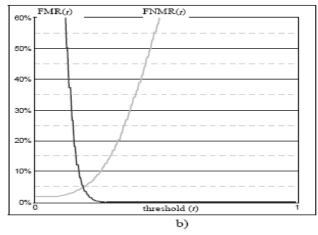
The Equal Error Rate

-ROC:



Using the ROC Curve


Matcher *b* is always better than matcher *a* since for every possible FNMR, its FMR is lower



ROC curve – example on DB1

- 2800 genuine pairs, 4950 imposters pairs

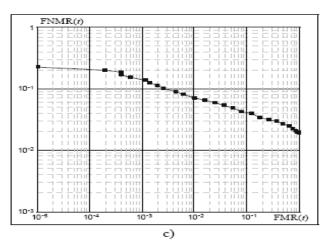


Figure 1.5. Evaluation of a fingerprint verification algorithm over FVC2002 database DB1 (Maio et al., 2002b): a) genuine and impostor distributions were computed from 2800 genuine pairs and 4950 impostor pairs, respectively; b) FMR(t) and FNMR(t) are derived from the score distributions in a); c) DET curve is derived from the FMR(t) and FNMR(t) curves in b).

FVC 2004 results

用 用 用 用

- -http://bias.csr.unibo.it/fvc2004/
- -http://www.nist.gov/srd/biomet.htm

Algorithm	EER(%)	Avg Enroll Time (sec)	Avg Match Time (sec)	Avg Model Size (KB)
Bioscrypt Inc.	2.07	0.08	1.48	24
Sonda Ltd	2.10	2.07	2.07	1.3
Chinese Academy of Sciences	2.30	0.35	0.67	16.4
Gevarius	2.45	0.69	0.71	2.0
Jan Lunter	2.90	1.01	1.19	3.1

<u>Database:</u>

- DB1: optical sensor "V300" by CrossMatch
- DB2: optical sensor "U.are.U 4000" by Digital Persona
- DB3: thermal sweeping sensor "FingerChip FCD4B14CB" by Atmel
- DB4: synthetic fingerprints

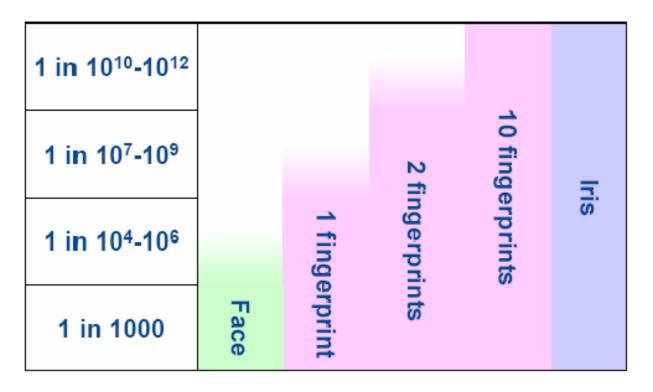
FVC COMPARISION

NIST Fingerprint Vendor Technology Evaluation

- http://fpvte.nist.gov/
- -NIST Proprietary Fingerprint Template (PFT) Testing
 - -http://fingerprint.nist.gov/SDK/

	DB1	DB2	DB3	DB4
FVC2000	2.30%	1.39%	4.34%	3.38%
FVC2002	0.20%	0.17%	0.63%	0.16%
FVC2004	1.61%	2.32%	1.34%	0.81%
FVC2006	5.88%	0.05%	1.59%	0.39%

Table 4.3. Average accuracy (EER) of the three best performing algorithms over the different FVC databases. A direct comparison across the different competitions is not possible due to the use of databases of unequal difficulty.



Accuracy and scalability

FRR lower than

Suitable biometrics

Mansfield 2004

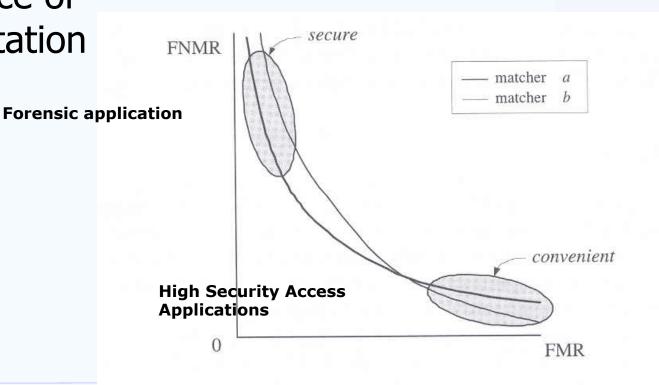
Convenience vs Security

 The higher the FRR, the less convenient an application is because more subjects are incorrectly recognized and therefore subject to denial of service or the exception handling process

$$Convenience = 1 - FRR$$

 Similarly, the FAR is often used as some measure of security of a verification system

$$Security = 1 - FAR$$


Convenience vs Security

用用用

- Convenience of a Biometric
- Convenience of Implementation

Convenience = 1 - FRR

Security = 1 - FAR

Errors specific to biometrics

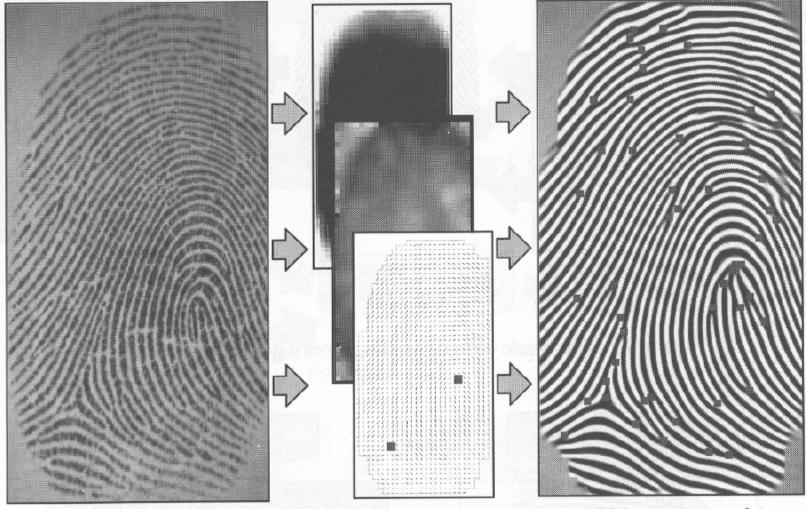
- 是 是 是 用 用
- The Failure to Acquire (FTA) rate is the percentage of the target population that does not possess a particular biometric, i.e. does not deliver a usable biometric sample (e.g. the fingerprint of a brick layer (the ridges have been worn away)
- The Failure to Enroll (FTE) rate is the proportion of the population that somehow cannot be enrolled because of limitations of the technology or procedural problems.

Synthetic fingerprint generation Daniel Novák

6.12, 2011, Prague

Acknowledgments: Xavier Palathingal, Andrzej Drygajlo, Handbook of Fingerprint Recognition

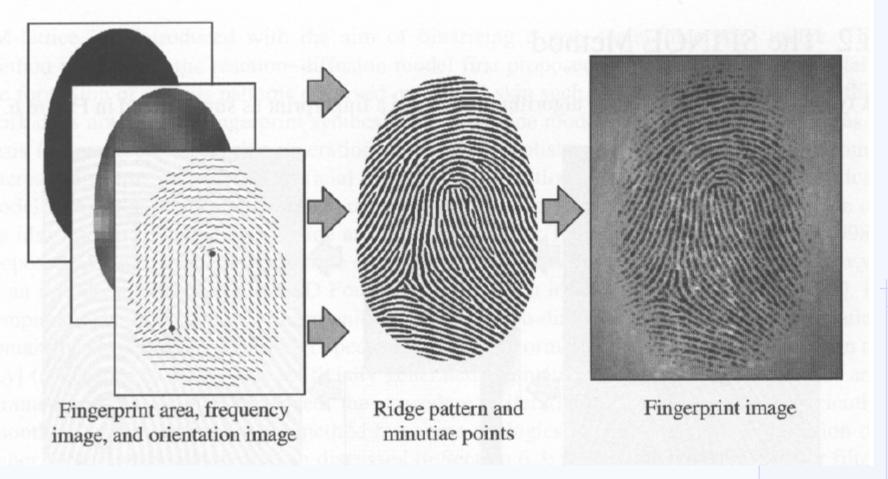
Synthetic fingerprint generation


Motivation

- Accuracy of each algorithm is usually evaluated on relatively small proprietary databases
- Evaluation on small databases makes the accuracy estimates highly data dependent
- When the databases are proprietary, the accuracy of various fingerprint matching algorithms cannot be compared directly
- Synthetic fingerprint generation can be used to automatically create large databases of fingerprints, thus allowing fingerprint recognition algorithms to be effectively trained, tested, optimized, and compared

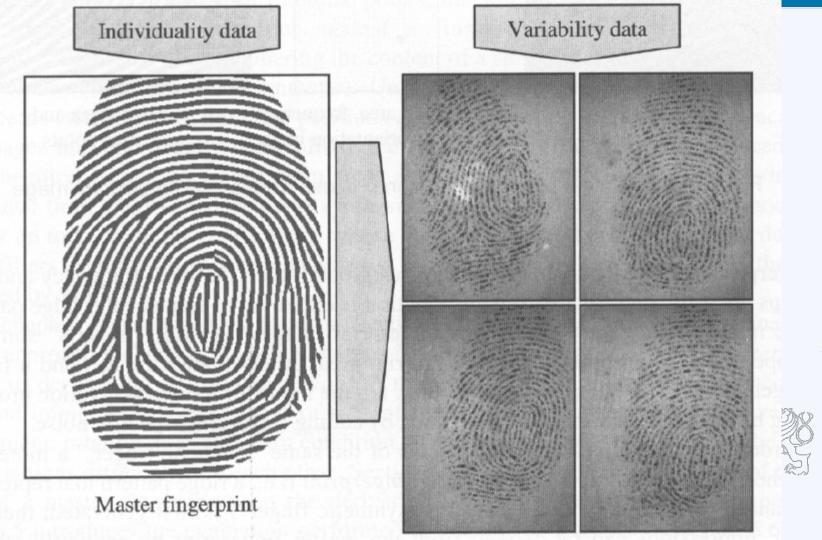
*Feature extraction process

Fingerprint image

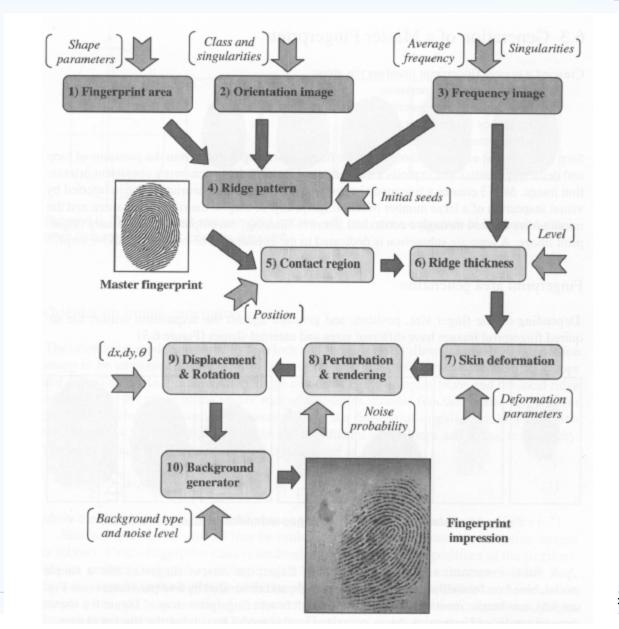

Fingerprint area, frequency image, and orientation image

Ridge pattern and minutiae points

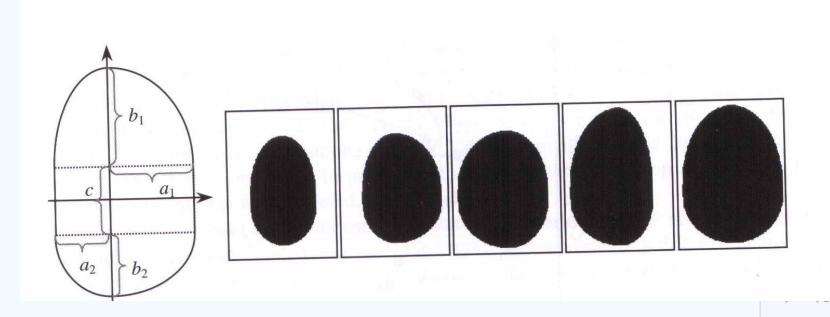
Basic idea



From master to final impression

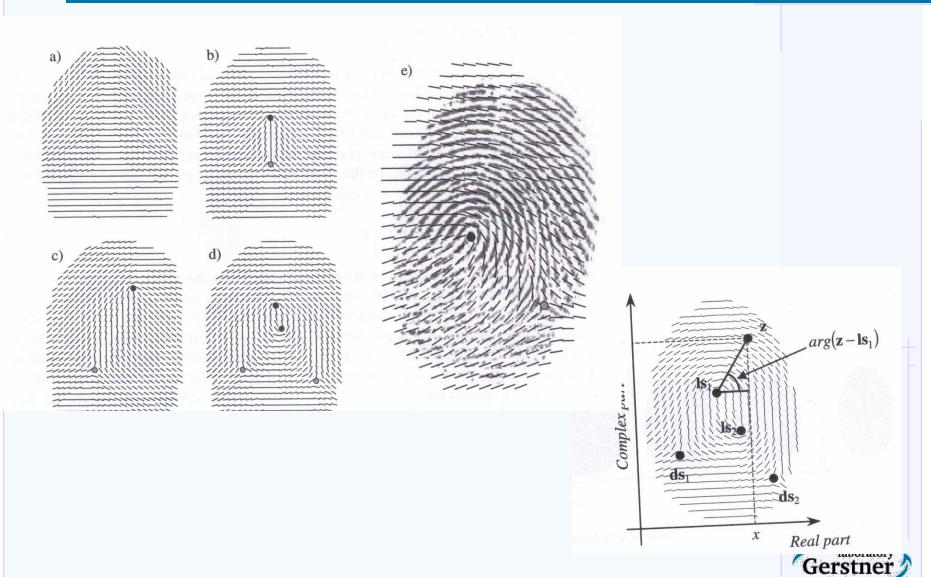


*SFINGE

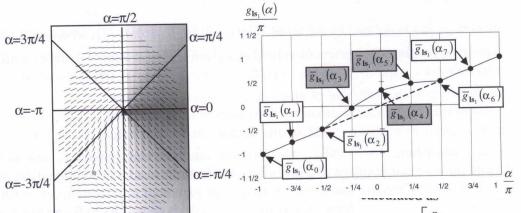


chnical University

FP area generation

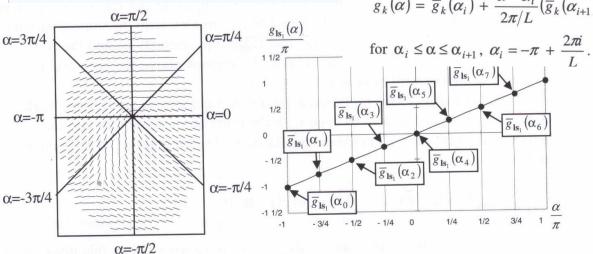


*Orientation



Orientation

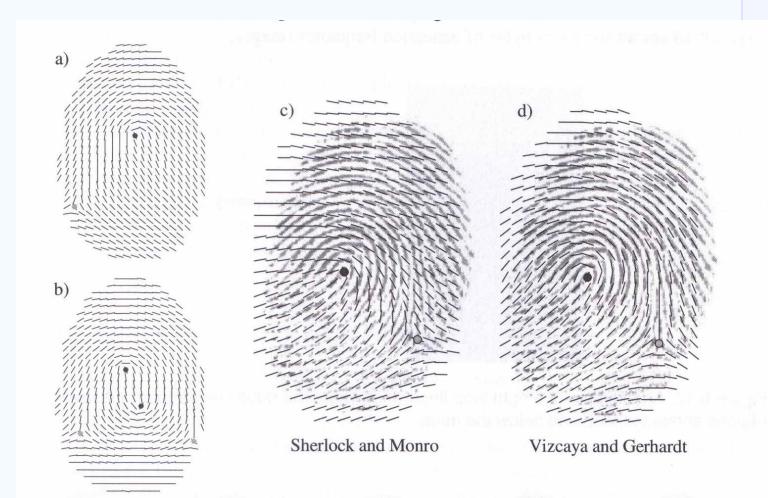
 $\alpha = -\pi/2$



$$\theta = \frac{1}{2} \left[\sum_{i=1}^{n_d} g_{\mathbf{d}\mathbf{s}_i} \left(arg(\mathbf{z} - \mathbf{d}\mathbf{s}_i) \right) - \sum_{i=1}^{n_c} g_{\mathbf{l}\mathbf{s}_i} \left(arg(\mathbf{z} - \mathbf{l}\mathbf{s}_i) \right) \right], \tag{2}$$

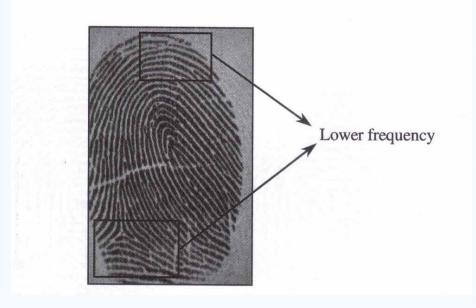
where $g_k(\alpha)$, for $k \in \{\mathbf{ls}_1, ..., \mathbf{ls}_{n_c}, \mathbf{ds}_1, ..., \mathbf{ds}_{n_d}\}$, are piecewise linear functions capable of locally correcting the orientation field with respect to the value given by the Sherlock and Monroe model:

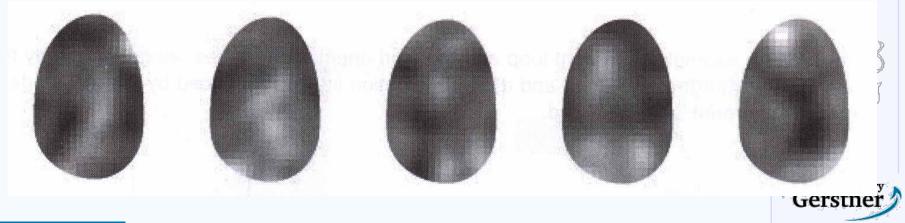
$$g_k(\alpha) = \overline{g}_k(\alpha_i) + \frac{\alpha - \alpha_i}{2\pi/L} (\overline{g}_k(\alpha_{i+1}) - \overline{g}_k(\alpha_i)), \tag{3}$$



nt of Cybernetics, Czech Technical University

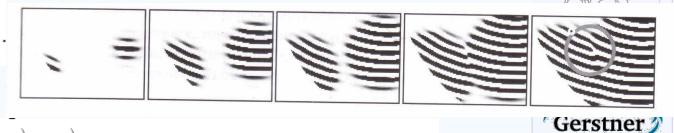
Orientation





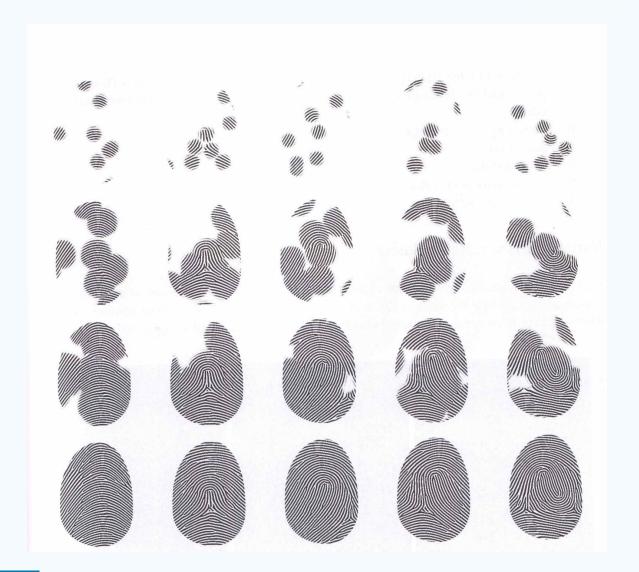
Frequency

*Ridge line



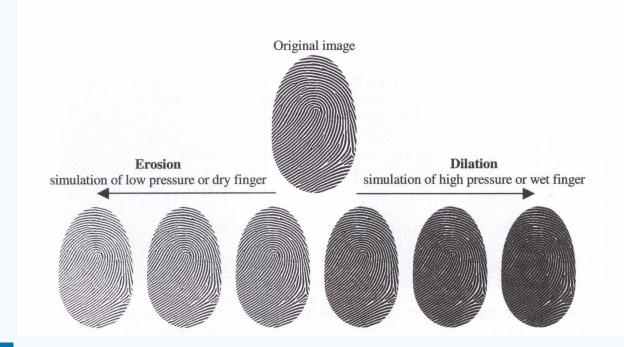
- -Gabor filter
- -Seeds

$$\sigma_x = \sigma_v = \sigma$$

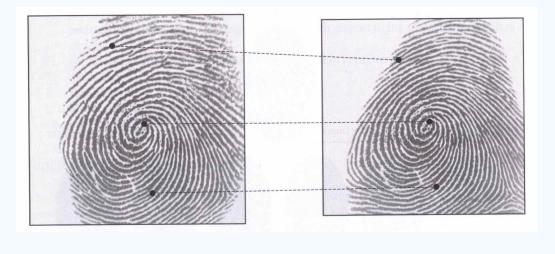

$$e^{-\left(\left(\frac{3}{2f}\right)^2/2\sigma^2\right)} = 10^{-3}.$$

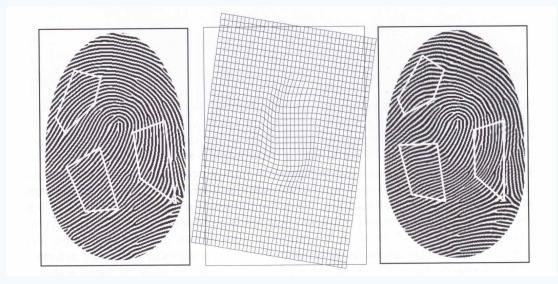
 $g(x,y:\theta,f) = e^{-\left(\!\left(x^2+y^2\right)/2\sigma^2\right)} \cdot \cos\!\left[2\pi \cdot f \cdot \left(x \cdot \sin\theta + y \cdot \cos\theta\right)\right], \text{ s, Czech Technical University}$

Ridge line



*Ridge thickness





Distortion

Perturbation & Translation

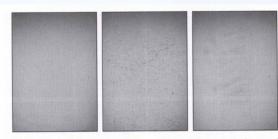
Background

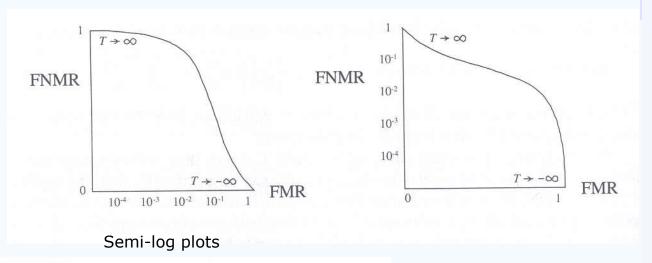
- $\overline{\mathbf{b}} = \frac{1}{m} \sum_{\mathbf{b} \in \mathbf{B}} \mathbf{b}$ be their mean vector;
- $\mathbf{C} = \frac{1}{m} \sum_{\mathbf{b} \in \mathbf{B}} (\mathbf{b} \overline{\mathbf{b}}) (\mathbf{b} \overline{\mathbf{b}})^T$ be their covariance matrix;
- $\Phi \in \Re^{n \times n}$ be the orthonormal matrix that diagonalizes \mathbb{C} ; that is, $\Phi^T \mathbb{C} \Phi = \Lambda$,

$$\Lambda = Diag(\lambda_1, \lambda_2, ..., \lambda_n), \ \Phi = [\varphi_1, \varphi_2, ..., \varphi_n],$$

where λ_i and φ_i , i = 1...n are the eigenvalues and the eigenvectors of C, respectively.

- 1. a k-dimensional vector $\mathbf{y} = [y_1, y_2, ..., y_k]$ is randomly generated according to k normal distributions: $y_j = N(0, \lambda_{i_k}^{1/2}), j = 1..k$;
- 2. the corresponding *n*-dimensional vector **b** is obtained as: $\mathbf{b} = \mathbf{\Phi}_k \mathbf{y} + \overline{\mathbf{b}}$.




Figure 6.22. Examples of background-only images (acquired from an optical scanner) used for training the background generator.

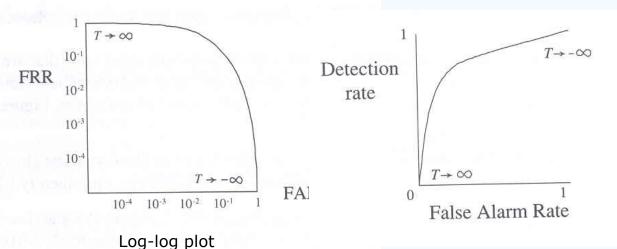


Figure 6.23. Three synthetic images with backgrounds generated according to the model (the parameters used for training are m = 65 and k = 8).

*Variations of ROCs

