Markov Models: Markov Chains

Michael Anděl

Department of ComputerScience, FEL ČVUT

Seminars – Timeline

Markov Models:

 Observable Markov Models 	
• Simple assignment <i>CpG-islands recognition</i> (5 pt.)	1 seminar
 Motivation 	i seminar
 Preparation for the main assignment 	J
 Hidden Markov Models 	
Basic algorithms	2 seminars
 Main assignment: Gene finding (15 pt.) 	J

Gene Expression:

• Assignment: Gene expression data analysis (10 pt.) 2 seminars

イロト イロト イヨト イヨト 一日 - つへで

• Modern approaches: Deep learning, sequencing...

Advanced Bioinformatics:

- Higher-order structures, gene-networks modelling... 2 3 seminars
- Voluntary assignment

Seminars – Timeline

Markov Models:

٠	Observable Markov Models	
٠	Simple assignment <i>CpG-islands recognition</i> (5 pt.)	1 seminar
	 Motivation 	i seminar
	 Preparation for the main assignment 	J
۲	Hidden Markov Models	
٠	Basic algorithms	2 seminars
٠	Main assignment: <i>Gene finding</i> (15 pt.)	J

Gene Expression:

Assignment: Gene expression data analysis (10 pt.)
Modern approaches: Deep learning, sequencing...

<ロ> < ()、<</p>

Advanced Bioinformatics:

- Higher-order structures, gene-networks modelling... 2 3 seminars
- Voluntary assignment

Seminars – Timeline

Markov Models:

٠	Observable Markov Models	
٠	Simple assignment <i>CpG-islands recognition</i> (5 pt.)	1 seminar
	 Motivation 	1 Seminar
	 Preparation for the main assignment 	J
۲	Hidden Markov Models	
٠	Basic algorithms	2 seminars
٠	Main assignment: <i>Gene finding</i> (15 pt.)	J

Gene Expression:

- Assignment: Gene expression data analysis (10 pt.)
 Modern approaches: Deep learning, sequencing...

Advanced Bioinformatics:

- Higher-order structures, gene-networks modelling...
 Voluntary assignment

$\stackrel{\scriptstyle <}{\scriptstyle \sim}$ What are the specifics of sequence-like data?

- $\boldsymbol{\boldsymbol{\xi}}$ is it optimal to employ relational paradigm for
 - a) data storage,
 - b) data mining?
- $\begin{array}{l} & \mathcal{W} \text{hat is the Markov Model} \text{Markov Chain?} \\ & \mathcal{M} = (\mathcal{A}, \mathcal{S}, P_{t}, P_{\text{init}}), \text{ where:} \\ & \mathcal{A} \hdots \h$

▲ロト ▲団ト ▲目ト ▲目ト 三日 - のへ⊙

¿ What does the *observable* mean?

- $\stackrel{\scriptstyle <}{\scriptstyle \sim}$ What are the specifics of sequence-like data?
- \underline{i} Is it optimal to employ relational paradigm for
 - a) data storage,
 - b) data mining?
- $$\begin{split} & \begin{matrix} \vdots \\ \mathcal{M} = (\mathcal{A}, \mathcal{S}, \mathcal{P}_t, \mathcal{P}_{\text{init}}), \text{ where:} \\ & \mathcal{A} \\ & \ldots \text{ alphabet, here } \mathcal{A} = \{a, c, t, g\} \\ & \mathcal{S} \\ & \ldots \text{ state space, here } \mathcal{S} = \mathcal{A} \\ & \mathcal{P}_{\text{init}} : \mathcal{S} \rightarrow [0, 1] \\ & \ldots \text{ initial probabilities} \\ & \mathcal{P}_t : \mathcal{S} \times \mathcal{S} \rightarrow [0, 1] \\ & \ldots \text{ transition probabilities} \end{split}$$
- ¿ What does the *observable* mean?

- ¿ What are the specifics of sequence-like data?
- \underline{i} Is it optimal to employ relational paradigm for
 - a) data storage,
 - b) data mining?
- ¿ What is the Markov Model Markov Chain?

$$\begin{split} \mathcal{M} &= (\mathcal{A}, \mathcal{S}, P_{t}, P_{\text{init}}), \text{ where:} \\ \mathcal{A} & \dots \text{ alphabet, here } \mathcal{A} &= \{a, c, t, g\} \\ \mathcal{S} & \dots \text{ state space, here } \mathcal{S} &= \mathcal{A} \\ P_{\text{init}} : \mathcal{S} &\to [0, 1] \dots \text{ initial probabilities} \\ P_{t} : \mathcal{S} \times \mathcal{S} \to [0, 1] \dots \text{ transition probabilities} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

¿ What does the *observable* mean?

- $\stackrel{\scriptstyle .}{_{\scriptstyle c}}$ What are the specifics of sequence-like data?
- ¿ Is it optimal to employ relational paradigm for
 - a) data storage,
 - b) data mining?
- $\begin{array}{l} & \mathcal{M} \text{ be in the Markov Model Markov Chain?} \\ & \mathcal{M} = (\mathcal{A}, \mathcal{S}, \mathcal{P}_t, \mathcal{P}_{\text{init}}), \text{ where:} \\ & \mathcal{A} \hdots \$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

¿ What does the *observable* mean?

i What is the main advantage of Markov Model (MM)? let $\mathbf{x} = \langle x_1, x_2, \dots, x_L \rangle \in A^L$ be a sequence made of $A \in \mathcal{A}$ then $P(\mathbf{x}) = P(x_1, x_2, \dots, x_L) = P(x_1)P(x_2|x_1) \dots P(x_L|x_{L-1})$

: What is the main advantage of Markov Model (MM)? let $\mathbf{x} = \langle x_1, x_2, \dots, x_L \rangle \in A^L$ be a sequence made of $A \in \mathcal{A}$ then $P(\mathbf{x}) = P(x_1, x_2, \dots, x_L) = P(x_1)P(x_2|x_1)\dots P(x_L|x_{L-1})$

イロト 不得下 イヨト イヨト 二日

Observable MM, an example:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¿ What do you miss to compute the probability of a sequence?

Adding a *silent* BEGIN state:

transition probabilities $P(x_i = a | x_{i-1} = g) = 0.16$ $P(x_i = c | x_{i-1} = g) = 0.34$ $P(x_i = g | x_{i-1} = g) = 0.38$ $P(x_i = t | x_{i-1} = g) = 0.12$

¿ How to adjust the MM formalism?
M = (A, S_{init}, S, P_t), where S = A ∪ S_{init}
¿ How long can be the sequences generated?

Adding a *silent* BEGIN state:

; How to adjust the MM formalism? $\mathcal{M} = (\mathcal{A}, S_{\text{init}}, \mathcal{S}, P_{t})$, where $\mathcal{S} = \mathcal{A} \cup S_{\text{init}}$

¿ How long can be the sequences generated?

イロト 不得下 イヨト イヨト 二日

Adding a *silent* BEGIN state:

- : How to adjust the MM formalism? $\mathcal{M} = (\mathcal{A}, S_{\text{init}}, \mathcal{S}, P_{\text{t}})$, where $\mathcal{S} = \mathcal{A} \cup S_{\text{init}}$: How long can be the sequences generated?
- $\overleftarrow{\iota}$ How long can be the sequences generated?

Adding a *silent* BEGIN state:

i How to adjust the MM formalism? $\mathcal{M} = (\mathcal{A}, S_{\text{init}}, \mathcal{S}, P_{\text{t}}), \text{ where } \mathcal{S} = \mathcal{A} \cup S_{\text{init}}$

Adding a *silent* BEGIN state:

◆ロト ◆聞と ◆注と ◆注と □注

: How to adjust the MM formalism? $\mathcal{M} = (\mathcal{A}, S_{\text{init}}, \mathcal{S}, P_{\text{t}}), \text{ where } \mathcal{S} = \mathcal{A} \cup S_{\text{init}}$

Adding a *silent* END state:

source: Mark Craven

996

Markov Chains: Learning

Simply, learning the probabilities:

•
$$P(a) = \frac{\#(a')+1}{\#('*')+5}$$

• $P(a|c) = \frac{\#('ca')+1}{\#('c*')+5}$
• $P(end|c) = \frac{\#('c\setminus n')+1}{\#('c*')+5}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

¿ What are the CpG islands?

- ¿ Why do we call them 'CpG'?
- ¿ What is CG content?
- ¿ Given that the CG content in the human genome is 41%, what CpG frequency would we expect?

source: wikipedia.org

(4 個) トイヨト イヨト

- ¿ What are the CpG islands?
- ¿ Why do we call them 'CpG'?
- ¿ What is CG content?
- ¿ Given that the CG content in the human genome is 41%, what CpG frequency would we expect?

source: wikipedia.org

・ 同 ト ・ ヨ ト ・ ヨ ト

- ¿ What are the CpG islands?
- ¿ Why do we call them 'CpG'?
- ¿ What is CG content?
- ¿ Given that the CG content in the human genome is 41%, what CpG frequency would we expect?

source: wikipedia.org

(4 回 ト 4 ヨ ト 4 ヨ ト

- ¿ What are the CpG islands?
- ¿ Why do we call them 'CpG'?
- ¿ What is CG content?
- ¿ Given that the CG content in the human genome is 41%, what CpG frequency would we expect?

source: wikipedia.org

通 ト イヨ ト イヨト

General Classification Task on MM:

- Given two sets of sequences {x_i ∈ A*}^N_{i=1|class} originated from two different classes (e.g. class ∈ {CpG, null} for the CpG regions and rest of the genome, respectively)
- Learn two Markov models approximating these distribution P(x|class): e.g.: P(x|CpG) = P(x₁, x₂,..., x_L|CpG) = = P_{CpG}(x₁)P_{CpG}(x₂|x₁)P_{CpG}(x₃|x₂)...P_{CpG}(x_L|x_{L-1})
- Decide for an unseen \mathbf{x}_{new} sequence its belonging:

IF $P(class_1|\mathbf{x}_{new}) > P(class_2|\mathbf{x}_{new})$ THEN $class_1$ ELSE $class_2$

• $P(c_1|\mathbf{x}) > P(c_2|\mathbf{x}) \iff P(c_1)P(\mathbf{x}|c_1) > P(c_2)P(\mathbf{x}|c_2)$

Assignment: CpG-islands Recognition

- 1. Implement a function which learns a MM based on a set of training sequences.
- Learn the two models on the sequences form cpg_train.txt and null_train.txt
- Enumerate the accuracy of your classifier (models) according to the test sequences seqs_test.txt and appropriate labels classes_test.txt ('1' stands for CpG, '0' for the rest)

イロト 不得下 イヨト イヨト 二日