Markov Chain Models (Part 1)

BMI/CS 576

www.biostat.wisc.edu/bmi576/
Mark Craven
craven@biostat.wisc.edu
Fall 2011

Motivation for sequence modeling

CTGTTGACAATTAATCATCGAACTAGTATAATAGTACGCA

these sequences are E. coli promoters

tctgaaatgagctgttgacaattaatcatcgaactagttaactagtacgcaagttca accggaagaaaaccgtgacattttaacacgtttgttacaaggtaaaggcgacgccgc aaattaaaattttattgacttaggtcactaaatactttaaccaatataggcatagcg ttgtcataatcgacttgtaaaccaaattgaaaagatttaggtttacaagtctacacc catcctcgcaccagtcgacgacggtttacgctttacgtatagtggcgacaatttttt tccagtataatttgttggcataattaagtacgacgagtaaaattacatacctgcccg acagttatccactattcctgtggataaccatgtgtattagagttagaaaacacgagg
these sequences are not promoters
atagtctcagagtcttgacctactacgccagcattttggcggtgtaagctaaccatt aactcaaggctgatacggcgagacttgcgagccttgtccttgcggtacacagcagcg ttactgtgaacattattcgtctccgcgactacgatgagatgcctgagtgcttccgtt tattctcaacaagattaaccgacagattcaatctcgtggatggacgttcaacattga aacgagtcaatcagaccgctttgactctggtattactgtgaacattattcgtctccg aagtgcttagcttcaaggtcacggatacgaccgaagcgagcctcgtcctcaatggcc gaagaccacgcctcgccaccgagtagacccttagagagcatgtcagcctcgacaact
How can we tell the difference? Is this sequence a promoter?

Motivation for Markov models in computational biology

- there are many cases in which we would like to represent the statistical regularities of some class of sequences
- genes
- various regulatory sites in DNA (e.g. promoters)
- proteins in a given family
- etc.
- Markov models are well suited to this type of task

A Markov chain model

transition probabilities
$P\left(x_{i}=a \mid x_{i-1}=g\right)=0.16$
$P\left(x_{i}=c \mid x_{i-1}=g\right)=0.34$
$P\left(x_{i}=g \mid x_{i-1}=g\right)=0.38$
$P\left(x_{i}=t \mid x_{i-1}=g\right)=0.12$

Markov chain models

- can also have an end state; allows the model to represent
- a distribution over sequences of different lengths
- preferences for ending sequences with certain symbols

Markov chain models

- a Markov chain model is defined by
- a set of states
- some states emit symbols
- other states (e.g. the begin and end states) are silent
- a set of transitions with associated probabilities
- the transitions emanating from a given state define a distribution over the possible next states

Markov chain models

- Let X be a sequence of random variables $X_{1} \ldots X_{L}$ representing a biological sequence
- from the chain rule of probability

$$
\begin{aligned}
P(X)= & P\left(X_{L}, X_{L-1}, \ldots, X_{1}\right) \\
= & P\left(X_{L} \mid X_{L-1}, \ldots, X_{1}\right) \times \\
& P\left(X_{L-1} \mid X_{L-2}, \ldots, X_{1}\right) \times \\
& \vdots \\
& P\left(X_{1}\right)
\end{aligned}
$$

Markov chain models

- from the chain rule we have

$$
P(X)=P\left(X_{L} \mid X_{L-1}, \ldots, X_{1}\right) P\left(X_{L-1} \mid X_{L-2}, \ldots, X_{1}\right) \ldots P\left(X_{1}\right)
$$

- key property of a (1 ${ }^{\text {st }}$ order) Markov chain: the probability of each X_{i} depends only on the value of X_{i-1}

$$
\begin{aligned}
P(X)= & P\left(X_{L} \mid X_{L-1}\right) P\left(X_{L-1} \mid X_{L-2}\right) \ldots P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right) \\
& =P\left(X_{1}\right) \prod_{i=2}^{L} P\left(X_{i} \mid X_{i-1}\right)
\end{aligned}
$$

The probability of a sequence for a given Markov chain model

$$
P(c g g t)=P(c) P(g \mid c) P(g \mid g) P(t \mid g) P(\text { end } \mid t)
$$

Markov chain notation

- the transition parameters can be denoted by $a_{x_{i-1} x_{i}}$ where

$$
a_{x_{i-1} x_{i}}=P\left(x_{i} \mid x_{i-1}\right)
$$

- similarly we can denote the probability of a sequence x as

$$
a_{\mathrm{B} x_{1}} \prod_{i=2}^{L} a_{x_{i-1} x_{i}}=P\left(x_{1}\right) \prod_{i=2}^{L} P\left(x_{i} \mid x_{i-1}\right)
$$

where $a_{\mathrm{B} x_{1}}$ represents the transition from the begin state

Estimating the model parameters

- Given some data, how can we determine the probability parameters of our model?
- one approach: maximum likelihood estimation
- given a set of data D
- set the parameters θ to maximize

$$
P(D \mid \theta)
$$

- i.e. make the data D look as likely as possible under the model

Maximum likelihood estimation

- suppose we want to estimate the parameters $P(a)$, $P(\mathrm{c}), P(\mathrm{~g}), P(\mathrm{t})$
- and we're given the sequences
accgcgctta
gcttagtgac
tagccgttac

$$
P(a)=\frac{n_{a}}{\sum_{i} n_{i}}
$$

- then the maximum likelihood estimates are

$$
\begin{array}{ll}
P(a)=\frac{6}{30}=0.2 & P(g)=\frac{7}{30}=0.233 \\
P(c)=\frac{9}{30}=0.3 & P(t)=\frac{8}{30}=0.267
\end{array}
$$

Maximum likelihood estimation

- suppose instead we saw the following sequences gccgcgcttg gcttggtggc
tggccgttgc
- then the maximum likelihood estimates are

$$
\begin{aligned}
& P(g)=\frac{13}{30}=0.433 \\
& P(t)=\frac{8}{30}=0.267
\end{aligned}
$$

do we really want to set this to 0 ?

A Bayesian approach

- instead of estimating parameters strictly from the data, we could start with some prior belief for each
- for example, we could use Laplace estimates

$$
P(a)=\frac{n_{a}+1}{\sum_{i}\left(n_{i}+1\right)} \quad \text { pseudocount }
$$

- where n_{i} represents the number of occurrences of character i
- using Laplace estimates with the sequences
gccgcgettg
gcttggtggc

$$
P(a)=\frac{0+1}{34}
$$

tggccgttgc

$$
P(c)=\frac{9+1}{34}
$$

A Bayesian approach

- a more general form: m-estimates

$$
P(a)=\frac{n_{a}+p_{a} m}{\left(\sum_{i} n_{i}\right)+m} \text { prior probability of a }
$$

- with $\mathrm{m}=8$ and uniform priors gccgcgcttg $\begin{aligned} & \text { gcttggtggc } \\ & \text { tggccgttgc }\end{aligned} \quad P(c)=\frac{9+0.25 \times 8}{30+8}=\frac{11}{38}$

Estimation for $1^{\text {st }}$ order probabilities

- to estimate a $1^{\text {st }}$ order parameter, such as $P(c \mid g)$, we count the number of times that g follows the history c in our given sequences
- using Laplace estimates with the sequences gccgcgcttg gcttggtggc

$$
\begin{array}{lc}
P(a \mid g)=\frac{0+1}{12+4} & P(a \mid c)=\frac{0+1}{7+4} \\
P(c \mid g)=\frac{7+1}{12+4} & \vdots \\
P(g \mid g)=\frac{3+1}{12+4} & \\
P(t \mid g)=\frac{2+1}{12+4} &
\end{array}
$$ tggccgttgc

