Applications of HMMs in Computational Biology

BMI/CS 576
www.biostat.wisc.edu/bmi576.html Mark Craven craven@biostat.wisc.edu

The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs

Protein family - a simplified view

ACA-- ATG
T C A A C T A T C
ACAC--AGC
AGA---ATC
A C C G - - ATC
ACAC--ATC
query 1
A A A C - - ATC
query 2
TGCT--ATC
query 3

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.

Protein family - HMM

	Sequence		Probability $\times 100$	Log odds
Consensus	A C A C - - A T C	4.7	6.7	
Original	A C A - - - A T G	3.3	4.9	
sequences	T C A A C T A T C	0.0075	3.0	
	A C A C - - A G C	1.2	5.3	
	A G A - - - A T C	3.3	4.9	
	A C C G - - A T C	0.59	4.6	
Exceptional	T G C T - - A G G	0.0023	-0.97	

Profile HMMs

- profile HMMs are used to model families of sequences
 sequence characters

Multiple alignment of SH3 domain

(1)	
咸玉	
1-4	

A profile HMM trained for the SH 3 domain

Profile HMMs

- to classify sequences according to family, we can train a profile HMM to model the proteins of each family of interest
- given a sequence x, use Bayes' rule to make classification

$$
P\left(c_{i} \mid x\right)=\frac{P\left(x \mid c_{i}\right) P\left(c_{i}\right)}{\sum_{j} P\left(x \mid c_{j}\right) P\left(c_{j}\right)}
$$

- use Forward algorithm to compute $P\left(x \mid c_{i}\right)$ for each family c_{i}

Profile HMM accuracy

- classifying 2447proteins into 33 families
- x-axis represents the median \# of negative sequences that score as high as a positive sequence for a given family's model

See Pfam database for a large collection profile HMMs

The gene finding task

Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the coordinates of individual exons and introns

Eukaryotic gene structure

Sources of evidence for gene finding

- signals: the sequence signals (e.g. splice junctions) involved in gene expression
- content: statistical properties that distinguish proteincoding DNA from non-coding DNA
- conservation: signal and content properties that are conserved across related sequences (e.g. syntenic regions of the mouse and human genome)

Gene finding: search by content

- encoding a protein affects the statistical properties of a DNA sequence

UUU F 0.46	UCU S 0.19	UAU Y 0.44	UGU C 0.46				
UUC F 0.54	UCC S 0.22	UAC Y 0.56	UGC C 0.54				
UUA L 0.08	UCA S 0.15	UAA * 0.30	UGA $~ 0.0 .47$				
UUG L 0.13	UCG S 0.05	UAG * 0.24	UGG W 1.00				
CUU L 0.13	CCU P 0.29	CAU H 0.42	CGU R 0.08				
CUC L 0.20	CCC P 0.32	CAC H 0.58	CGC R 0.18				
CUA L 0.07	CCA P 0.28	CAA Q 0.27	CGA R 0.11				
CUG L 0.40	CCG P 0.11	CAG Q 0.73	CGG R 0.20				
AUU I 0.36	ACU T 0.25	AAU N 0.47	AGU S 0.15				
AUC I 0.47	ACC T 0.36	AAC N 0.53	AGC S 0.24				
AUA I 0.17	ACA T 0.28	AAA K 0.43	AGA R 0.21				
AUG M 1.00	ACG T 0.11	AAG K 0.57	AGG R 0.21				
GUU V 0.18	GCU A 0.27	GAU D 0.46	GGU G 0.16				
GUC V 0.24	GCC A 0.40	GAC D 0.54	GGC G 0.34				
GUA V 0.12	GCA A 0.23	GAA B 0.42	GGA G 0.25				
GUG V 0.46	GCG A 0.11	GAG E 0.58	GGG G 0.25				

[Codon/a.a./fraction per codon per a.a.]
Homo sapiens data from the Codon Usage Database

The GENSCAN HMM for Eukaryotic Gene Finding [Burge \& Karlin '97]

Each shape denotes a functional unit of a gene or genomic region and is represented by a submodel in the HMM

Pairs of intron/exon units represent the different ways an intron can interrupt a coding sequence (after $1^{\text {st }}$ base in codon, after $2^{\text {nd }}$ base or after $3^{\text {rd }}$ base)

Complementary submodel (not shown) detects genes on opposite DNA strand

GENSCAN uses a variety of submodel types

sequence feature	model
exons	$5^{\text {th }}$ order inhomogenous
introns, intergenic regions	$5^{\text {th }}$ order homogenous
poly-A, translation initiation, promoter	$0^{\text {th }}$ order, fixed-length
splice junctions	tree-structured variable memory

Markov models \& exons

- consider modeling a given coding sequence
- for each "word" we evaluate, we'll want to consider its position with respect to the reading frame we're assuming
reading frame

- can do this using an inhomogeneous model

A fifth-order inhomogenous Markov chain

Inference with the gene-finding HMM

given: an uncharacterized DNA sequence

find: the most probable path through the model for the sequence

- this path will specify the coordinates of the predicted genes (including intron and exon boundaries)
- the Viterbi algorithm is used to compute this path

Parsing a DNA sequence

Other issues in Markov models

- there are many interesting variants and extensions of the models/algorithms we considered here (some of these are covered in BMI/CS 776)
- separating length/composition distributions with semi-Markov models
- modeling multiple sequences with pair HMMs
- learning the structure of HMMs
- going up the Chomsky hierarchy: stochastic context free grammars
- discriminative learning algorithms (e.g. as in conditional random fields)
- etc.

