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The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH



Protein family - a simplified view

A C A – – – A T G

T C A A C T A T C

A C A C – – A G C family

A G A – – – A T C

A C C G – – A T C

A C A C – – A T C     query 1

A A A C – – A T C     query 2

T G C T – – A T C     query 3
An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.

Protein family - HMM

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.



Profile HMMs

i 2 i 3i 1i 0

d 1 d 2 d 3

m 1 m 3m 2start endMatch states represent
key conserved positions

Insert states account
for extra characters
in some sequences

Delete states are silent; they
Account for characters missing
in some sequences

• profile HMMs are used to model families of sequences

A 0.01
R 0.12
D 0.04
N 0.29
C 0.01
E 0.03
Q 0.02
G 0.01

Insert and match states have
emission distributions over
sequence characters

Multiple alignment of SH3 domain 

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences



A profile HMM trained for the SH3 domain

Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences

match states

delete states
(silent)

insert states

Profile HMMs
• to classify sequences according to family, we can train a 

profile HMM to model the proteins of each family of interest
• given a sequence x, use Bayes’ rule to make classification

• use Forward algorithm to compute              for each family ci

P(c i | x) = P(x | c i)P(c i)

P(x | c j )P(c j )
j

∑

P(x | c i)



Profile HMM accuracy

Figure from Jaakola et al., ISMB 1999

BLAST-based 
methods

profile HMM-based 
methods

• classifying 2447proteins into 33 families
• x-axis represents the median # of negative sequences that 

score as high as a positive sequence for a given family’s model

See Pfam database for a large 
collection profile HMMs



The gene finding task

Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the 

coordinates of individual exons and introns

Eukaryotic gene structure



Sources of evidence for gene finding

• signals: the sequence signals (e.g. splice junctions) 
involved in gene expression

• content: statistical properties that distinguish protein-
coding DNA from non-coding DNA

• conservation: signal and content properties that are 
conserved across related sequences (e.g. syntenic
regions of the mouse and human genome)

Gene finding: search by content
• encoding a protein affects the statistical properties of 

a DNA sequence



Pairs of intron/exon units represent
the different ways an intron can interrupt
a coding sequence  (after 1st base in codon, 
after 2nd base or after 3rd base)

Complementary submodel
(not shown) detects genes on 
opposite DNA strand

The GENSCAN HMM for Eukaryotic 
Gene Finding [Burge & Karlin ‘97]
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Each shape denotes a functional unit of 
a gene or genomic region and is 
represented by a submodel in the HMM

GENSCAN uses a variety of 
submodel types

sequence feature model

exons 5th order inhomogenous

introns, intergenic regions 5th order homogenous

poly-A, translation initiation, 
promoter

0th order, fixed-length

splice junctions tree-structured variable memory



Markov models & exons
• consider modeling a given coding sequence

• for each “word” we evaluate, we’ll want to consider its position 
with respect to the reading frame we’re assuming

G C T A C G G A G C T T C G G A G C

G C T A C G

reading frame

G is in 3rd codon position

C T A C G G G is in 1st position

T A C G G A A is in 2nd position

• can do this using an inhomogeneous model

A fifth-order inhomogenous Markov chain
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Inference with the gene-finding HMM

given: an uncharacterized DNA sequence
find: the most probable path through the model for the 

sequence

• this path will specify the coordinates of the predicted 
genes (including intron and exon boundaries)

• the Viterbi algorithm is used to compute this path

Parsing a DNA sequence

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA

The Viterbi path represents 

a parse of a given sequence,

predicting exons, introns, etc



Other issues in Markov models
• there are many interesting variants and extensions of 

the models/algorithms we considered here (some of 
these are covered in BMI/CS 776)
– separating length/composition distributions with 

semi-Markov models
– modeling multiple sequences with pair HMMs
– learning the structure of HMMs
– going up the Chomsky hierarchy: stochastic 

context free grammars
– discriminative learning algorithms (e.g. as in 

conditional random fields)
– etc.


