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The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs
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Protein family - a simplified view

ACA — - - ATG

TCA ACTATC

ACAC - - AGC 7 family
AGA---ATC

AC CG--ATC _

ACAC —-— - ATC queryl
AAAC--AT C query 2
TGCT - - ATC query3

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.

Protein family - HMM

é_'s 1.0 é_s 1.0 é.z_'e 4 é_m 1.0 é 1.0 é_s
G >(ce: [c —>G > Gaz: [™|Ge2
TH2 T T T T -8 T
Sequence Probability x 100 Log odds
Consensus A CAC--ATC 4.7 6.7
Original ACA---ATG 33 4.9
sequences T CAACTATC 0.0075 3.0
ACAC--AGC 1.2 5.3
AGA---ATC 33 49
ACCG--ATC 0.59 4.6
Exceptional TGCT - -AGG 0.0023 -0.97

An example from Krogh: An Introduction to HMMs for Biological Sequences, CMMB 1998.




Profile HMMs

» profile HMMs are used to model families of sequences
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Multiple alignment of SH3 domain
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Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences




A profile HMM trained for the SH3 domain
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Figure from A. Krogh, An Introduction to Hidden Markov Models for Biological Sequences

Profile HMMs

 to classify sequences according to family, we can train a
profile HMM to model the proteins of each family of interest

e given a sequence x, use Bayes’ rule to make classification
P(x]c;)P(c)
> P(x|c))P(c))
j

P(c; [x) =

 use Forward algorithm to compute P(x |c,) for each family ¢
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Profile HMM accuracy

30

profile HMM-based
methods

BLAST-based
methods

Number of SCOP families with given perfarmance
&

BLAST:SCOP-only —+—
BLAST:5COP+SAM-T98-homologs —=—
SAM-TY98 —%—
SVM-Fisher —5—

1
0 0.02 0.04 0.06 0.08 0.1
Median RFP

Figure from Jaakola et al., ISMB 1999

» classifying 2447proteins into 33 families

e X-axis represents the median # of negative sequences that
score as high as a positive sequence for a given family’s model

See Pfam database for a large
collection profile HMMs
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Pfam 25.0 (March 2011, 12273 families)

The Pfam database is a large collection of protein families, each represented by multiple sequence
alignments and hidden Markov models (HMMs). More...

QUICKLINKS  YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS...
SEQUENCE SEARCH  Analyze your protein sequence for Pfam matches
VIEW A PFAM FAMILY  View Pfam family annotation and alignments
VIEWACLAN  See groups of related families
VIEW A SEQUENCE  Look at the domain organisation of a protein sequence
VIEW A STRUCTURE  Find the domains on a PDB structure
KEYWORD SEARCH  Query Pfam by keywords

Enter any type of accession or 1D ta jump to the page for a Pram family or
clan, UniProt sequence, PDB structure, ets.

Or view the help pages for more information

Recent Pfam blog® posts BHide this
No, seriously, we've made a release (posted 1 April 2011)

Well, it should have been out about 6 months ago, but finally the long awaited Pfam release 25.0 is
here! Release 25.0 contains a total of 12273 families, with 384 new families and 21 families killed since
the latest release. Pfam 25.0 is based on UniProt release 2010_05. Those of you who follow Pfam
closely [...]

Who's who 2 (posted 22 March 2011)

It has been some time since we posted a blog, 50, to keep you all on your toes, we are going behind
the scenes to reveal something about the minds that run Pfam... From the longest-serving member to
the newest recruit we have elicited a few key facts in the form of answers to some [

b and staff changes at Xfamc (posted 1 September 2010)

We have been very sad to see a few people leave the group recently. Rob Finn has been the dedicated
and hard working project leader of Pfam for many years. In fact as a summer student he is credited
with preparing most of the families for Pfam 2.0 [1]! We're expecting to see great things [...]

Citing Pfam Mirrors
If you find Pfam useful, please consider citing the reference The following are official Pfam mirror
that describes this work: sites

The Pfam protein families database®: R.D. Finn, 1. Mistry, J. WTSL UKS

Tate, P. Coggill, A Heger, J.E. Pollington, O.L. Gavin, P N

Gunesekaran, G. Ceric, K. Forslund, L. Holm, E.L. =
Sonnhammer, S.R. Eddy, A. Bateman L2 mAT
Nucleic Acids Research (2010) Database Issue 38:0211-222

Comments or questions on the site? Senc 3 mal to plam-help@sanger.ac.uk
e Wellcome Trust




The gene finding task

Given: an uncharacterized DNA sequence

Do: locate the genes in the sequence, including the
coordinates of individual exons and introns
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Sources of evidence for gene finding

 signals: the sequence signals (e.g. splice junctions)
involved in gene expression

e content: statistical properties that distinguish protein-
coding DNA from non-coding DNA

e conservation: signal and content properties that are

conserved across related sequences (e.g. syntenic
regions of the mouse and human genome)

Gene finding: search by content

» encoding a protein affects the statistical properties of

a DNA sequence

UUU F 0.46 UCU S 0.19 UAU Y 0.44 UGU C 0.4¢6
UUC F 0.54 UCC S 0.22 UACY 0.56 UGC C 0.54
UUA L 0.08 UCA S 0.15 UAA * 0.30 UGA * 0.47
UUG L 0.13 UCG S 0.05 UAG * 0.24 UGG W 1.00
ClU L 0.13 CCU P 0.29 CAUHO0.42 CGUR 0.08
COC L 0.20 CCCP 0.32 CACHO.58 CGCR0.18
ClA L 0.07 CCAPO0.28 CAAQUO.27 CGARO.11
CUG L 0.40 CCG P 0.11 CAGQO0.73 CGGR 0.20
AUU I 0.3¢ ACU T 0.25 ARU N 0.47 AGU S 0.15
AUC I 0.47 ACC T 0.36 AARCN 0.53 RAGC S 0.24
AUA T 0.17 ACAT 0.28 AARK 0.43 AGARO0.21
AUG M 1.00 ACG T 0.11 ARG K 0.57 AGGR 0.21
GUU V 0.18 GCU A 0.27 GAUD 0.46 GGU G 0.16
GUCV 0.24 GCC A 0.40 GACD 0.54 GGC G 0.34
GUAV 0.12 GCA A 0.23 GAAE 0.42 GGA G 0.25
GUG V 0.46 GCG A 0.11 GAGE 0.58 GGG G 0.25

[Codon/a.a./fraction per codon per a.a.]
Homo sapiens data from the Codon Usage Database




The GENSCAN HMM for Eukaryotic
Gene Finding [Burge & Karlin ‘97]

Each shape denotes a functional unit of
a gene or genomic region and is
represented by a submodel in the HMM

<

Pairs of intron/exon units represent ~
the different ways an intron can interrupt

a coding sequence (after 15t base in codon,
after 2" base or after 3" base)

(single-exon

Complementary submodel
(not shown) detects genes on
opposite DNA strand

Figure from Burge & Karlin, Journal of Molecular Biology, 1997

Forward (+) strand

_________ (intergenic
region)

GENSCAN uses a variety of
submodel types

sequence feature model

exons 5t order inhomogenous

introns, intergenic regions 5t order homogenous

poly-A, translation initiation, ot order, fixed-length

promoter

splice junctions tree-structured variable memory




Markov models & exons

» consider modeling a given coding sequence

» for each “word” we evaluate, we’ll want to consider its position
with respect to the reading frame we’re assuming

reading frame

GCTACGGAGCTTCGGAGC

A

GCTACG Gis in 3 codon position
CTACGG Gis in 15t position
TACGGA Ais in 2" position

» can do this using an inhomogeneous model

A fifth-order inhomogenous Markov chain

AAAAA AAAAA AAAAA
CTACA CTACA .
CIACC CIACC
start 42 D
CTACG CTACG TACAA o
CTACT CIACIT ‘
TACAC 1o states
s s TACAG |in pos 2
GCTAC GCTAC e
TIITl T1011 11010
position 2 position 3 position 1




Inference with the gene-finding HMM

given: an uncharacterized DNA sequence

find: the most probable path through the model for the
sequence

« this path will specify the coordinates of the predicted
genes (including intron and exon boundaries)

 the Viterbi algorithm is used to compute this path

Parsing a DNA sequence

The Viterbi path represents
a parse of a given sequence,
predicting exons, introns, etc

ACCGTTACGTGTCATTCTACGTGATCATCGGATCCTAGAATCATCGATCCGTGCGATCGATCGGATTAGCTAGCTTAGCTAGGAGAGCATCGATCGGATCGAGGAGGAGCCTATATAAATCAA




Other issues in Markov models

» there are many interesting variants and extensions of
the models/algorithms we considered here (some of
these are covered in BMI/CS 776)

— separating length/composition distributions with
semi-Markov models

— modeling multiple sequences with pair HMMs
— learning the structure of HMMs

— going up the Chomsky hierarchy: stochastic
context free grammars

— discriminative learning algorithms (e.g. as in
conditional random fields)

— eflc.




