Heuristic Methods for Sequence Database Searching

BMI/CS 576 www.biostat.wisc.edu/bmi576/ Mark Craven craven@biostat.wisc.edu

Heuristic alignment motivation

- O(mn) too slow for large databases with high query traffic
- heuristic methods do fast approximation to dynamic programming
 - FASTA [Pearson & Lipman, 1988]
 - BLAST [Altschul *et al.*, 1990;
 Altschul et al., *Nucleic Acids Research* 1997]

Heuristic alignment motivation

- consider the task of searching UnitProtKB/Swiss-Prot against a query sequence:
 - say our query sequence is 362 amino-acids long
 - most recent release of DB contains 188,719,038 amino acids
 - finding local alignments via dynamic programming would entail $O(10^{11})$ matrix operations
- many servers handle thousands of such queries a day (NCBI > 500,000)

Heuristic alignment

- heuristic algorithm: a problem-solving method which isn't guaranteed to find the optimal solution, but which is efficient and finds good solutions
- key heuristics in BLAST
 - look for seeds of high scoring alignments
 - use dynamic programming selectively
- key tradeoff made: sensitivity vs. speed

sensitivit $y = \frac{\# \text{ significan } t \text{ matches } detected}{\# \text{ significan } t \text{ matches } in \text{ DB}}$

Overview of BLAST (Basic Alignment Search Tool)

- given: query sequence q, word length w, word score threshold T, segment score threshold S
 - compile a list of "words" (of length w) that score at least T when compared to words from q
 - scan database for matches to words in list
 - extend all matches to seek high-scoring alignments
- return: alignments scoring at least S

Determining query words

Given:

query sequence: QLNFSAGW word length w = 2 (default for protein usually w = 3) word score threshold T = 9

Step 1: determine all words of length *w* in query sequence

QL LN NF FS SA AG GW

Determining query words

Step 2: determine all words that score at least *T* when compared to a word in the query sequence

Scanning the database

- search database for all occurrences of query words
- approach:
 - index database sequences into table of words (pre-compute this)
 - index query words into table (at query time)

Extending hits

- extend hits in both directions (without allowing gaps)
- terminate extension in one direction when score falls certain distance below best score for shorter extensions

Sensitivity vs. running time

- the main parameter controlling the sensitivity vs. running-time trade-off is *T* (threshold for what becomes a query word)
 - small T: greater sensitivity, more hits to expand
 - large *T*: lower sensitivity, fewer hits to expand

The two-hit method

- extension step typically accounts for 90% of BLAST's execution time
- key idea: do extension only when there are two hits on the same diagonal within distance A of each other
- to maintain sensitivity, lower *T* parameter
 - more single hits found
 - but only small fraction have associated 2nd hit

PSI (Position Specific Iterated) BLAST

- basic idea
 - use results from BLAST query to construct a *profile matrix*
 - search database with profile instead of query sequence
 - iterate

A profile matrix

searching with a profile

- aligning profile matrix to a simple sequence
 - like aligning two sequences
 - except score for aligning a character with a matrix position is given by the matrix itself – not a substitution matrix

BLAST programs

Program	Query	Database	
BLASTP	Protein	Protein	
BLASTN	DNA	DNA	
BLASTX	Translated DNA	Protein	
TBLASTN	Protein	Translated DNA	
TBLASTX	Translated DNA	Translated DNA	

BLAST results

Sequences producing significant alignments:	Score (Bits)	E Value	
gb AAN84548.1 beta globin chain variant [Homo sapiens]	90.6	9e-18	G
<u>gb AAK29639.1 AF349114_1</u> beta globin chain variant [Homo sapiens	90.6	1e-17	
dD AAF00489.1 AF181989 1 nemoglobin beta subunit Variant [Hom	90.6	1e-17	G
<u>qb AAA35952.1</u> beta-globin <u>qb AAX37051.1</u> hemoglobin beta [synthetic construct]	90.6	1e-17 1e-17	•
gb AAR96398.1 hemoglobin beta [Homo sapiens]	90.1	1e-17	UG
<u>gb AAL68978.1 AF083883_1</u> mutant beta-globin [Homo sapiens] <u>gb AAX29557.1</u> hemoglobin beta [synthetic construct]	<u>90.1</u> 90.1	1e-17 1e-17	G
ref NP_000509.1 beta globin [Homo sapiens] >ref XP_508242.1 sp P02024 HBB_GORGO Hemoglobin subunit beta (Hemoglobin beta cha	<u>90.1</u> 90.1	1e-17 1e-17	UG
<u>gb AAD19696.1 </u> hemoglobin beta chain [Homo sapiens] emb CAA26204.1 beta-globin [Pan troglodytes]	<u>90.1</u> 89.7	2e-17 2e-17	UG
gb AAN16468.1 hemoglobin beta chain variant Hb.Sinai-Bel Air [H	89.7	2e-17	G
gb ABG47031.1 hemoglobin [Homo sapiens]	89.7	2e-17	G
<u>qb ABA19233.1</u> hemoglobin beta [Homo sapiens] emb CAA43421.1 beta-globin [Gorilla gorilla]	<u>89.7</u> 89.3	2e-17 2e-17	G
gb AAY46275.1 beta globin chain [Homo sapiens]	89.3	2e-17	G
gb AAK20080.1 mutant beta globin [Homo sapiens]	89.3	2e-17	G
gb AAN11321.1 hemoglobin beta chain variant Hb-I_Toulouse [Homo	89.3	3e-17	G
gbAAG46184.1mutant beta-globin [Homo sapiens] >gbAAG46185gbABX52138.1hemoglobin, beta (predicted) [Papio anubis]	<u>88.9</u> 88.4	3e-17 5e-17	G
gb AAD30656.1 mutant beta-globin [Homo sapiens]	88.0	6e-17	G
pdb 1HBA B Chain B, High-Resolution X-Ray Study Of Deoxyhemog	86.7	1e-16	s

BLAST comments

- it's heuristic: may miss some good matches
- it's fast: empirically, 10 to 50 times faster than Smith-Waterman
- PSI-BLAST can detect more distant relationships among protein sequences, but the process of generalizing the query can also lead it astray
- large impact:
 - NCBI's BLAST server handles more than 500,000 queries a day
 - most used bioinformatics program in the world