
Structured Query Language
SQL I

History
• IBM – after 1970 - relational DBMS prototype - System R
• After 1908 – basis of 2 commercial DBMSs: SQL/DS, DB2

SQL standard

• Standardization institutions

• ANSI: American National Standards Institute
• ISO: International Organization for Standardization
• IEC: International Electrotechnical Commission

• SQL86 (sometimes called SQL87) - SQL 1
! 1986 ANSI X3.135-1986 Database language SQL
! 1987 ISO 9075-1987 Database language SQL
Referential integrity not standardized before 1989.
! 1989 ANSI X3.135-1989 Database Language SQL With

Integrity Enhancement
! 1989 ISO 9075-1989 Database language SQL

History II

! Embedded SQL

! 1989 ANSI X3.168-1989 Database Language Embedded SQL
! neexistuje ISO standard pro embedde SQL

Embedded SQL allows for asking SQL queries from a program
written in classical host programming language, typically C language

Queries written directly to C source code.

Special preprocessor replaces these queries with invoking
respective functions that are part of DBMS vendor’s libraries.

Around 1990 frequently used when developing database
applications in C languege.

History

! SQL92 – aka SQL2:
• 1992 ANSI X3.135-1992 Database language SQL
! 1992 ISO/IEC 9075-1992 Database language SQL

• The most frequently used SQL standard.
• These lectures will focus on SQL 92

Further development

! SQL99 – aka SQL3
! Regular expressions
! Recursive queries
! Non-scalar data types
! Etc.

! 2003: SQL2003
! XML support
! Standardized concept of SEQUENCE and automatically generated values

http://www.wiscorp.com/sql_2003_standard.zip

! 2006: SQL2006
! Extended support of XML (XQuery)
! Conversions XML ↔ SQL
! Export/import XML

SQL – data types I

Numerical data types stored precisely (fixed decimal point)

INTEGER integers Range implementationally dependent, typically
between -2147483648 and 214783647

SMALLINT integers Range implementationally dependent, typicallye -32768 až
32767.
Definition: range not bigger than INTEGER.

NUMERIC
NUMERIC(p)
NUMERIC(p,s)

Number – possibly with fractional part. Decadic number with p digits, s of
them behind decimal point.

E.g. DECIMAL(5,2) has 3 positions on the left of the decimal point and 2
positions on the right of the decimal point.
If p or s not expressed explicitly, a default is use that is dependent on
particular implementation.

The number is always stored with the respective precission (unless a
„physical“ limit reached)

DECIMAL
DECIMAL(p)
DECIMAL(p,s)

Similar to NUMERIC. However, the number may be stored more precisely
that prescribed (unless „physical“ limit reached).

Remark: NUMERIC – may be stored as string of digits, while DECIMAL in interbal (binary)
representation of the respective processor type.

SQL – data types II

Numeric data types stored imprecisely (floating decimal point)
REAL Floating decimal

point – simple
precission

Precision implementationally dependent
Usually default precission for data with floating decimal
point on given HW platform

DOUBLE
PRECISON

Floating decimal
point – double
precission

Precision implementationally dependent
Usually double precission for data with floating decimal
point on given HW platform
Definition: precision greater than REAL.

FLOAT
FLOAT(p)

Allows for defining the requested precission. The number may be stored with
higher precision than prescribed.

The requested precision p may be achieved with simple (default) precision on
one platform, whereas with double precision on another platform.

SQL – data types III

Strings of characters

CHARACTER
CHARACTER(x)

String of characters with specified length.
If x not expressed, equiv. To CHAR(1).

CHARACTER VARYING
VARCHAR
CHARACTER VARYING(x)
VARCHAR(x)

Strings wit variable length (alocated so many bytes as
needed for particular string).
The maximal length limited by x.
Maximal length depends on particular implementation.

NATIONAL CHARACTER
NCHAR
NVARCHAR

Support for national alphabets.
UNICODE

SQL – data types IV

Date and time
DATE Date:

Length 10 chars incl. separators
YYYY-MM-DD

TIME
TIME(p)

Time:
p number of decimal positions (fraction of a second)
Length 8 characters if p=0, else 9+p
Default 0 decimal positions
HH:MM:SS
HH:MM:SS.PPP

TIMESTAMP
TIMESTAMP(p)

Date + time.
Length 19 positions if p=0, else 20+p
Default 6 decimal positions
YYYY-MM-DD HH:MM:SS

CREATE TABLE I
CREATE TABLE PACKAGE
 (PACKID CHAR(4),
 PACKNAME CHAR(20),
 PACKVER DECIMAL(3,2),
 PACKTYPE CHAR(15),
 PACKCOST DECIMAL(5,2))

Creates an empty table with 5 columns as defined.

Column
name

Column
data type

DROP TABLE Computer

Removes an existing table of given name.
Name of the table to

be removed

Name of the table to
be created

CREATE TABLE II (attribute based integrity
constraint)

CREATE TABLE COMPUTER
 (COMPID DECIMAL(2) NOT NULL,
 MFGNAME CHAR(15) NOT NULL,
 MFGMODEL CHAR(25),
 PROCTYPE DECIMAL(7,2))

Integrity constraint (of a column
atributu). In this case it says that

the value of the respective
column is mandatory

When inserting a new row to the table, we need not specify values of all columns.
Cells with missing values will get assigned a special value NULL.

However, if integrity constrain NOT NULL, the value has to be specified mandatorily.
If not, DBMS rejects execution of the command and an exception will be raised
in the client program.

CREATE TABLE Films
 (CODE CHAR(5) CONSTRAINT Firstkey PRIMARY KEY

TITLE VARCHAR(40) NOT NULL,
 DateProd DATE,
 KIND VARCHAR(10),
 LEN INTERVAL HOUR TO MINUTE)

Integrity constrain may be have
got a name

CREATE TABLE II (attribute based integrity constraint)

CREATE TABLE IV (table based integrity
constraint)

CREATE TABLE Films
 (TITLE VARCHAR(40) NOT NULL,
 DateProd DATE,
 KIND VARCHAR(10),
 LEN INTERVAL HOUR TO MINUTE,
 CONSTRAINT pk_const PRIMARY KEY (TITLE, DateProd)

)

Integrity constrain on
the table level

If the primary key consists of multiple attributes, we can not expres it by an attribute
based integrity constraint as none of the attributes is primary key. The cpnstraint on
primary key has to be expressed by a table-based integrity constraint in such a case.

In the example above, the primary key is formed by a pair (TITLE, DateProd).

PRIMARY KEY je one of possible table-based integrity constraints.

CREATE TABLE V (integrity constraints)
CREATE TABLE osoby (
 os_cislo NUMBER(5) NOT NULL,
 rod_cis VARCHAR2(30) NOT NULL UNIQUE,
 jmeno VARCHAR2(30) NOT NULL,
 prijmeni VARCHAR2(30) NOT NULL,
 plat NUMBER(5) CHECK (plat > 5000 AND plat < 20000),
 cislo_prac NUMBER(5) NOT NULL,
 CONSTRAINT pk_osoby PRIMARY KEY (os_cislo),
 CONSTRAINT fk_prac FOREIGN KEY (cislo_prac)
 REFERENCES pracoviste (cislo_prac)
 ON UPDATE CASCADE
 ON DELETE CASCADE
)

1.  Multiple integrity constrains may be specified for a column at the same time.
2.  Integrity constrain may have a form of a generic condition
3.  Any integrity constrain of a column may be expressed in terpms of an integrity
 constrain on a table level.
4. Referential integrity

1

2

3

4

CREATE TABLE VI (integrity constraints)

CREATE TABLE COURSES (
 code VARCHAR2(10) PRIMARY KEY,
 name VARCHAR2(30) NOT NULL,
 credits NUMBER(2) DEFAULT 2,
);

Default value of an attribute:

If a row will be inserted that does not expressed a value of the „credits“ attribute,
its value will not be NULL but 2, as it is its default value (see the CREATE TABLE
statement above).

CREATE TABLE VII (generated ids)

CREATE SEQUENCE distrib_prim;

CREATE TABLE distributors (
did integer PRIMARY KEY DEFAULT nextval('distrib_prim'),
name varchar(40) NOT NULL CHECK (name <> '')
)

1.  Definition of a sequence that will be named distrib_prim in given case.
2.  When inserting a new row (without specifying value for did), its default value will be

evalueted by nextval function with the nase of the sequence as an attribute.

1

1

This particular case is not an SQL standard. It is a syntax of DBMS PostgreSQL.
Generated values standardized in SQL2006.

REFERENTIAL INTEGRITY
CREATE TABLE employee (
 emp_num NUMBER(5) PRIMARY KEY,
 ssn VARCHAR2(30) NOT NULL UNIQUE,
 dept_id NUMBER(5) NOT NULL,
 CONSTRAINT fk_dept FOREIGN KEY (dept_id)
 REFERENCES pracoviste (dept_id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
)

1. Integrity constraint fk_dept says, that attribute dept_id is a foreign key pointing to
such a row of the department table, whose primary key’s value equals to the value
of the dept_id attribute.

2. It means that rows representing all persons working in the given department have
the same value of the dept_id column that refers to their common department.

3. What happens if somebody changes the value of primary key of the departments
table? All the rows belonging to this department would suddebly point to a non-
existing department. This is what should not happen. ON UPDATE ... section
specify, how to solve this problem. In the particular case thsi section says
ON UPDATE CASCADE. This means that the respective depertment primary key
will be modified and in parallel, the value of foreign key in all rows of table employee
that point to this department will be updated with the new value of the primary key.

REFERENTIAL INTEGRITY II

4. What happens if somebody deletes a row of the department table that represents a

common deprtoment of one or more employees? Rows representing these
employees would suddenly point to a non-existing depertment. This is what should
not happen. The ON DELETE … section specifies how this problem shall be
handled. In our particular case this section specifies ON DELETE CASCADE. This
means that the respectice department will be deleted. However, all its employees
will be deleted in parallel.

CREATE TABLE employee (
 emp_num NUMBER(5) PRIMARY KEY,
 ssn VARCHAR2(30) NOT NULL UNIQUE,
 dept_id NUMBER(5) NOT NULL,
 CONSTRAINT fk_dept FOREIGN KEY (dept_id)
 REFERENCES pracoviste (dept_id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
)

REFERENTIAL INTEGRITY III

What are options other than CASCADE?

1. RESTRICT – the modification that would violate the referential integrity will not be
carried out. DBMS rejects execution of the modification of the primary key (ON
UPDATE) or deletion of the row (ON DELETE) – an exception will be thrown.

2. SET NULL – the modification of the depertment table will be executed, but value of
the foreign key of all rows of employee table that pointed to the deleted depertment
will be set to NULL. It means they will not point to the respective department any
more.

3. SET DEFAULT – similar as SET NULL – applicable if the foreign key has defined a

default value.
Modifikátory CASCADE, RSTRICT, SET NULL, SET DEFAULT se v sekcích
ON UPDATE a ON DELETE nastavují nezávisle.

CREATE TABLE employee (
 emp_num NUMBER(5) PRIMARY KEY,
 ssn VARCHAR2(30) NOT NULL UNIQUE,
 dept_id NUMBER(5) NOT NULL,
 CONSTRAINT fk_dept FOREIGN KEY (dept_id)
 REFERENCES pracoviste (dept_id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
)

INSERT INTO

INSERT INTO EMPLOYEE VALUES (611, 'Dinh Melissa', 2963)

List of columns not expressed – values will be assigend to columns in the order in
which the columns have been defined in the CREATE TABLE statement.

INSERT INTO EMPLOYEE (EMPNUM, EMPNAME)

VALUES (611, 'Dinh Melissa')

The section VALUES specifies one or more (comma separated) tuples of values.
The values will be assigend to columns in the order given by the list of columns.

Columns not introduced in the column list will get the NULL value. In this case
EMPPHONE will get NULL.

Table name List of values

Table name

List of values

List of
columns

SELECT I

SELECT <list of columns or *>
FROM <relation definition>
WHERE <selection condition>
GROUP BY <list of columns>

HAVING <group filtering condition>
ORDER BY <list of column_defs>

column_def ::= <column name> [<asc|desc>]

Logical operators:

= equals
<= less than or equal
< les than
>= greater than or equal
> greater than
<> not equal
!= not equal

SELECT II

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT PACKID, PACKNAME, PACKCOST
 FROM PACKAGE
 WHERE PACKCOST >= 200 AND
 PACKCOST <= 400

SELECT PACKID, PACKNAME, PACKCOST
 FROM PACKAGE
 WHERE PACKCOST
 BETWEEN 200 AND 400

Result:

PACKID PACKNAME PACKCOST
DB32 Manta 380.00
SS11 Limitless View 217.95

SELECT III

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

boolean predicate LIKE
character % is a wildcard, i.e. matches with any charatcter (sub)string

SELECT PACKID, PACKNAME
FROM PACKAGE
WHERE PACKNAME LIKE '%&%'

Result:

PACKID PACKNAME
WP08 Words & More

SELECT IV

Precate "IS NULL" is equal to „true“ iff the respective coulmn has
assigned no value

SELECT EMPNUM, EMPNAME

FROM EMPLOYEE
WHERE EMPPHONE IS NULL

TRUE for those rows in which
EMPPHONE has an undefined
value, i.e. NULL.

SELECT V (arithemetic operators)

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT PACKID, PACKNAME, (.90 * PACKCOST)
FROM PACKAGE

Result:

PACKID PACKNAME EXP1

AC01 Boise Accounting 635.25
DB32 Manta 342.00
DB33 Manta 387.16
SS11 Limitless View 196.16
WP08 Words & More 166.50
WP09 Freeware Processing 27.00

Name of this column generated by
DBMS client

i.e. 0.9 * 725.83
 0.9 * 380.00
 0.9 * 430.18
 atd.

SELECT VI

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT PACKID, PACKNAME, PACKTYPE
FROM PACKAGE
WHERE PACKTYPE IN ('Database',
 Spreadsheet',
 'Word Processing')

SELECT PACKID, PACKNAME,
PACKTYPE
FROM PACKAGE
WHERE PACKTYPE = 'Database' OR
 PACKTYPE = Spreadsheet' OR
 PACKTYPE = 'Word Processing'

Result:

PACKID PACKNAME PACKTYPE
DB32 Manta Database
DB33 Manta Database
SS11 Limitless View Spreadsheet
WP08 Words & More Word Processing
WP09 Freeware Processing Word Processing

SELECT VII (sorting)

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

Order of rows in the result of the query is undefined unless specified by OREDR clause:

SELECT PACKID, PACKNAME, PACKTYPE, PACKCOST

FORM PACKAGE
ORDER BY PACKTYPE, PACKCOST DESC

Rows will be oredered primarily by PACKTYPE. The order of rows with an equal value of PACKTYPE will be defined by
PACKCOST.
DESC ... descending
ASC ... ascending (default)

Result:
PACKID PACKNAME PACKTYPE PACKCOST
AC01 Boise Accounting 725.83
DB33 Manta Database 430.18
DB32 Manta Database 380.00
SS11 Limitless View Spreadsheet 217.95
WP08 Words & More Word Processing 185.00
WP09 Freeware Processing Word Processing 30.00

