
Programming Language Theory, week 11

1 Lecture

1.1 Foundations

In mathematics, the meaning of the equals sign is that the object on its left-
hand side is actually the same object as the one on its right-hand side. As a
result, any condition that holds true for the left-hand side object also holds true
for the right-hand side one (and vice versa).

In particular:

λx.y = λz.y λz.y[y 7→ x] = λz.x

λx.y[y 7→ x] = λz.x
(1)

1.2 Operational Semantics

• Usually well suited for reasoning about whole programs, less than ideal
for reasoning about program fragments.

• Sometimes tends to overspecify the implementation of certain language
features (e.g. evaluation order).

• Tends to put emphasis on syntax (rather than semantics) of the language.

1.3 Denotational Semantics of Expression Language

1.3.1 Syntax

Expr ::= Num |
4Expr |
Expr � Expr

(2)

1.3.2 Semantics

Semantic domain: N .

JnK = n (3)

J4eK = J4K(JeK) (4)

J4K = λx.− x (i.e. unary minus) (5)

Je1 � e2K = J�K(Je1K, Je2K) (6)

J�K = λx, y.x+ y (i.e. plus) (7)

1



Programming Language Theory, week 11

1.4 Denotational Semantics of Logic Formulae

1.4.1 Syntax

Formula ::= true |
false |
¬Formula |
Formula BinaryConnective Formula

BinaryConnective ::= ∧ | ∨

(8)

1.4.2 Semantics

Semantic domain: {0, 1}.

JtrueK = 1 (9)

JfalseK = 0 (10)

J¬fK = J¬K(JfK) (11)

J¬K = λx.1− x (12)

Jf1 c f2K = JcK(Jf1K, Jf2K) (c ∈ BinaryConnective) (13)

J∧K = λx, y.x · y (14)

J∨K = λx, y.(x+ y)− (x · y) (15)

1.5 Denotational Semantics of Regular Expressions

1.5.1 Syntax

RegExp ::= ∅ |
ε |
A |
RegExp∗ |
RegExp BinOp RegExp

BinOp ::= + | ·

(16)

where A is a predefined set of characters (alphabet).

2



Programming Language Theory, week 11

1.5.2 Semantics

Semantic domain: A∗.

J∅K = {} (17)

JεK = {ε} (18)

JaK = {a} (19)

Je∗K = J∗K(JeK) (20)

J∗K = λL.{l1 · . . . · ln|n ∈ N ∧ li ∈ L} (note: including ε) (21)

Je1 o e2K = JoK(Je1K, Je2K) (o ∈ BinOp) (22)

J+K = ∪ (23)

J·K = λA,B.{a · b|a ∈ A ∧ b ∈ B} (24)

1.6 Denotational Semantics of Lambda Calculus

1.6.1 Syntax

Expr ::= X |
λX.Expr |
Expr Expr

(25)

1.6.2 Semantics

Semantic domains: env = string → function, fcn = fcn → fcn; notational
conventions e ∈ env, f, f ′ ∈ fcn,E,E′ ∈ Expr

JxK = λe.e(x) (26)

Jλx.EK = λe.λp.JEK(e[x 7→ p]) (27)

JE1 E2K = λe.(JE1K(e))(JE2K(e)) (28)

1.7 Relational Algebra

Semantic domain: n-ary relations; key operations:

• selection σ: σage>=18,

• projection π: πname,age,

• union ∪, intersection ∩ and difference \ and

• cross-product ×.

3



Programming Language Theory, week 11

2 Seminar

1. Define a denotational semantics of the language of expressions with vari-
ables.

Semantic domain: varName→ Num.

JnK = λenv.n (29)

JvK = λenv.env(v) (30)

J4K = λe.λenv.− e(env) (31)

J�K = λe1, e2.λenv.e1(env) + e2(env) (32)

2. Extend the semantics of regular expressions with the subtraction operator
(−): r1 − r2 denotes the set of words generated by r1 and not generated
by r2.

J−K = \ (33)

3. For OI graduates: what could be an alternative semantic algebra for reg-
ular expressions?

Finite automata.

4. What is the denotation of λx.x?

Jλx.xK = λenv.λp.JxK(env[x 7→ p]) =

λenv.λp.(λenv′.env′(x))(env[x 7→ p]) =

λenv.λp.(env[x 7→ p])(x) = λenv.λp.p

(34)

4



Programming Language Theory, week 11

5. Consider the following situation: relation Student(name, age, schoolId)
has n1 records, relation School(id, schoolName, location) has n2 records.
What is the cost of executing

πname,schoolName(σage>18∧schoolId=id(Student× School))?

The cost of fetching one record from the permanent storage is k1, the cost
of processing one record is k2. Are there any ways of speeding up the
query?

k1 · n1 (for fetching Student) +

k1 · n2 (for fetching School) +

k2 · n1 · n2 (for computing the cross product) +

k2 · n1 · n2 (for selection) +

k2 · α · n1 · n2 (for projection, α is the percentage of records retained by the selection)

(35)

Alternatively, the same result can be obtained by executing

πname,schoolName(σschoolId=id(σage>18(Student)× School)), (36)

in which case, the cost of the query is

k1 · n1 (for fetching Student) +

k1 · β · n1 (for inner selection) +

k1 · n2 (for fetching School) +

k2 · β · n1 · n2 (for computing the cross product) +

k2 · β · n1 · n2 (for outer selection) +

k2 · α · n1 · n2 (for projection).

(37)

5


